Source: Medicines & Healthcare Products Regulatory Agency (GB) Revision Year: 2021 Publisher: Neon Healthcare Limited, 8 The Chase, John Tate Road, Hertford, SG13 7NN, United Kingdom
Hypersensitivity to candesartan cilexetil or to any of the excipients listed in section 6.1.
Second and third trimesters of pregnancy (see sections 4.4 and 4.6).
Severe hepatic impairment and/or cholestasis.
Children aged below 1 year (see section 5.3).
The concomitant use of Amias with aliskiren-containing products is contraindicated in patients with diabetes mellitus or renal impairment (GFR<60ml/min/1.73m²) (see sections 4.5 and 5.1).
There is evidence that the concomitant use of ACE inhibitors, angiotensin II receptor blockers or aliskiren increases the risk of hypotension, hyperkalaemia and decreased renal function (including acute renal failure). Dual blockade of RAAS through the combined use of ACE-inhibitors, angiotensin II receptor blockers or aliskiren is therefore not recommended (see Section 4.5 and 5.1).
If dual blockade therapy is considered absolutely necessary, this should only occur under specialist supervision and subject to frequent close monitoring of renal function, electrolytes and blood pressure. ACE-inhibitors and angiotensin II receptor blockers should not be used concomitantly in patients with diabetic nephropathy.
As with other agents inhibiting the renin-angiotensin-aldosterone system, changes in renal function may be anticipated in susceptible patients treated with Amias.
When Amias is used in hypertensive patients with renal impairment, periodic monitoring of serum potassium and creatinine levels is recommended. There is limited experience in patients with very severe or end-stage renal impairment (Clcreatinine <15 ml/min). In these patients Amias should be carefully titrated with thorough monitoring of blood pressure.
Evaluation of patients with heart failure should include periodic assessments of renal function, especially in elderly patients 75 years or older, and patients with impaired renal function. During dose titration of Amias, monitoring of serum creatinine and potassium is recommended. Clinical trials in heart failure did not include patients with serum creatinine >265 μmol/l (>3 mg/dl).
Amias has not been studied in children with a glomerular filtration rate less than 30 ml/min/1.73m² (see section 4.2).
The risk of adverse reactions, especially hypotension, hyperkalaemia and decreased renal function (including acute renal failure), may increase when Amias is used in combination with an ACE inhibitor (see section 4.8). Triple combination of an ACE-inhibitor, a mineralocorticoid receptor antagonist and candesartan cilexetil is also not recommended. Use of these combinations should be under specialist supervision and subject to frequent close monitoring of renal function, electrolytes and blood pressure.
ACE-inhibitors and angiotensin II receptor blockers should not be used concomitantly in patients with diabetic nephropathy.
During dialysis the blood pressure may be particularly sensitive to AT1-receptor blockade as a result of reduced plasma volume and activation of the renin-angiotensin-aldosterone system. Therefore, Amias should be carefully titrated with thorough monitoring of blood pressure in patients on haemodialysis.
Medicinal products that affect the renin-angiotensin-aldosterone system, including angiotensin II receptor antagonists (AIIRAs), may increase blood urea and serum creatinine in patients with bilateral renal artery stenosis or stenosis of the artery to a solitary kidney.
There is no experience regarding the administration of Amias in patients with a recent kidney transplantation.
Hypotension may occur during treatment with Amias in heart failure patients. It may also occur in hypertensive patients with intravascular volume depletion such as those receiving high dose diuretics. Caution should be observed when initiating therapy and correction of hypovolemia should be attempted.
For children with possible intravascular volume depletion (e.g. patients treated with diuretics, particularly those with impaired renal function), candesartan treatment should be initiated under close medical supervision and a lower starting dose should be considered (see section 4.2).
Hypotension may occur during anaesthesia and surgery in patients treated with angiotensin II antagonists due to blockade of the renin-angiotensin system. Very rarely, hypotension may be severe such that it may warrant the use of intravenous fluids and/or vasopressors.
As with other vasodilators, special caution is indicated in patients suffering from haemodynamically relevant aortic or mitral valve stenosis, or obstructive hypertrophic cardiomyopathy.
Patients with primary hyperaldosteronism will not generally respond to antihypertensive medicinal products acting through inhibition of the renin-angiotensin-aldosterone system. Therefore, the use of Amias is not recommended in this population.
Concomitant use of Amias with potassium-sparing diuretics, potassium supplements, salt substitutes containing potassium, or other medicinal products that may increase potassium levels (e.g. heparin) may lead to increases in serum potassium in hypertensive patients. Monitoring of potassium should be undertaken as appropriate.
In heart failure patients treated with Amias, hyperkalaemia may occur. Periodic monitoring of serum potassium is recommended. The combination of an ACE inhibitor, a potassium-sparing diuretic (e.g. spironolactone) and Amias is not recommended and should be considered only after careful evaluation of the potential benefits and risks.
In patients whose vascular tone and renal function depend predominantly on the activity of the renin-angiotensin-aldosterone system (e.g. patients with severe congestive heart failure or underlying renal disease, including renal artery stenosis), treatment with other medicinal products that affect this system has been associated with acute hypotension, azotaemia, oliguria or, rarely, acute renal failure. The possibility of similar effects cannot be excluded with AIIRAs. As with any antihypertensive agent, excessive blood pressure decrease in patients with ischaemic cardiopathy or ischaemic cerebrovascular disease could result in a myocardial infarction or stroke.
The antihypertensive effect of candesartan may be enhanced by other medicinal products with blood pressure lowering properties, whether prescribed as an antihypertensive or prescribed for other indications.
Amias contains lactose. Patients with rare hereditary problems of galactose intolerancetotal lactase deficiency or glucose-galactose malabsorption should not take this medicine.
AIIRAs should not be initiated during pregnancy. Unless continued AIIRA therapy is considered essential, patients planning pregnancy should be changed to alternative antihypertensive treatments which have an established safety profile for use in pregnancy. When pregnancy is diagnosed, treatment with AIIRAs should be stopped immediately, and, if appropriate, alternative therapy should be started (see sections 4.3 and 4.6).
In post-menarche patients the possibility of pregnancy should be evaluated on a regular basis. Appropriate information should be given and/or action taken to prevent the risk of exposure during pregnancy (see sections 4.3 and 4.6).
Compounds which have been investigated in clinical pharmacokinetic studies include hydrochlorothiazide, warfarin, digoxin, oral contraceptives (i.e. ethinylestradiol/levonorgestrel), glibenclamide, nifedipine and enalapril. No clinically significant pharmacokinetic interactions with these medicinal products have been identified.
Concomitant use of potassium-sparing diuretics, potassium supplements, salt substitutes containing potassium, or other medicinal products (e.g. heparin) may increase potassium levels. Monitoring of potassium should be undertaken as appropriate (see section 4.4).
Reversible increases in serum lithium concentrations and toxicity have been reported during concomitant administration of lithium with ACE inhibitors. A similar effect may occur with AIIRAs. Use of candesartan with lithium is not recommended. If the combination proves necessary, careful monitoring of serum lithium levels is recommended.
When AIIRAs are administered simultaneously with non-steroidal anti-inflammatory drugs (NSAIDs) (i.e. selective COX-2 inhibitors, acetylsalicylic acid (>3 g/day) and non-selective NSAIDs), attenuation of the antihypertensive effect may occur.
As with ACE inhibitors, concomitant use of AIIRAs and NSAIDs may lead to an increased risk of worsening of renal function, including possible acute renal failure, and an increase in serum potassium, especially in patients with poor pre- existing renal function. The combination should be administered with caution, especially in the elderly. Patients should be adequately hydrated and consideration should be given to monitoring renal function after initiation of concomitant therapy, and periodically thereafter.
Clinical trial data has shown that dual blockade of the renin-angiotensin-aldosterone-system (RAAS) through the combined use of ACE-inhibitors, angiotensin II receptor blockers or aliskiren is associated with a higher frequency of adverse events such as hypotension, hyperkalaemia and decreased renal function (including acute renal failure) compared to the use of a single RAAS-acting agent (see sections 4.3, 4.4 and 5.1).
Interaction studies have only been performed in adults.
The use of AIIRAs is not recommended during the first trimester of pregnancy (see section 4.4). The use of AIIRAs is contraindicated during the second and third trimesters of pregnancy (see sections 4.3 and 4.4).
Epidemiological evidence regarding the risk of teratogenicity following exposure to ACE inhibitors during the first trimester of pregnancy has not been conclusive; however a small increase in risk cannot be excluded. Whilst there is no controlled epidemiological data on the risk with AIIRAs, similar risks may exist for this class of drugs. Unless continued AIIRA therapy is considered essential, patients planning pregnancy should be changed to alternative antihypertensive treatments which have an established safety profile for use in pregnancy. When pregnancy is diagnosed, treatment with AIIRAs should be stopped immediately and, if appropriate, alternative therapy should be started.
Exposure to AIIRA therapy during the second and third trimesters is known to induce human fetotoxicity (decreased renal function, oligohydramnios, skull ossification retardation) and neonatal toxicity (renal failure, hypotension, hyperkalaemia) (see section 5.3).
Should exposure to AIIRAs have occurred from the second trimester of pregnancy, ultrasound check of renal function and skull is recommended.
Infants whose mothers have taken AIIRAs should be closely observed for hypotension (see sections 4.3 and 4.4).
Because no information is available regarding the use of Amias during breastfeeding, Amias is not recommended and alternative treatments with better established safety profiles during breast-feeding are preferable, especially while nursing a newborn or preterm infant.
No studies on the effects of candesartan on the ability to drive and use machines have been performed. However, it should be taken into account that occasionally dizziness or weariness may occur during treatment with Amias.
In controlled clinical studies adverse reactions were mild and transient. The overall incidence of adverse events showed no association with dose or age. Withdrawals from treatment due to adverse events were similar with candesartan cilexetil (3.1%) and placebo (3.2%).
In a pooled analysis of clinical trial data of hypertensive patients, adverse reactions with candesartan cilexetil were defined based on an incidence of adverse events with candesartan cilexetil at least 1% higher than the incidence seen with placebo. By this definition, the most commonly reported adverse reactions were dizziness/vertigo, headache and respiratory infection.
The table below presents adverse reactions from clinical trials and post-marketing experience.
The frequencies used in the tables throughout section 4.8 are: very common (≥1/10), common (≥1/100 to <1/10), uncommon (≥1/1,000 to <1/100), rare (≥1/10,000 to <1/1,000), very rare (<1/10,000) and not known (cannot be estimated from the available data).
Common: Respiratory infection
Very rare: Leukopenia, neutropenia and agranulocytosis
Very rare: Hyperkalaemia, hyponatraemia
Common: Dizziness/vertigo, headache
Very rare: Cough
Very rare: Nausea
Not known: Diarrhoea
Very rare: Increased liver enzymes, abnormal hepatic function or hepatitis
Very rare: Angioedema, rash, urticaria, pruritus
Very rare: Back pain, arthralgia, myalgia
Very rare: Renal impairment, including renal failure in susceptible patients (see section 4.4)
In general, there were no clinically important influences of Amias on routine laboratory variables. As for other inhibitors of the renin-angiotensin-aldosterone system, small decreases in haemoglobin have been seen. No routine monitoring of laboratory variables is usually necessary for patients receiving Amias. However, in patients with renal impairment, periodic monitoring of serum potassium and creatinine levels is recommended.
The safety of candesartan cilexetil was monitored in 255 hypertensive children and adolescents, aged 6 to <18 years old, during a 4 week clinical efficacy study and a 1 year open label study (see section 5.1). In nearly all different system organ classes, the frequency of adverse events in children are within common/uncommon range. Whilst the nature and severity of the adverse events are similar to those in adults (see the table above), the frequency of all adverse events are higher in children and adolescent, particularly in:
The overall safety profile for candesartan cilexetil in paediatric patients does not differ significantly from the safety profile in adults.
The adverse experience profile of Amias in adult heart failure patients was consistent with the pharmacology of the drug and the health status of the patients. In the CHARM clinical programme, comparing Amias in doses up to 32 mg (n=3,803) to placebo (n=3,796), 21.0% of the candesartan cilexetil group and 16.1% of the placebo group discontinued treatment because of adverse events. The most commonly reported adverse reactions were hyperkalaemia, hypotension and renal impairment. These events were more common in patients over 70 years of age, diabetics, or subjects who received other medicinal products which affect the renin-angiotensin-aldosterone system, in particular an ACE inhibitor and/or spironolactone.
The table below presents adverse reactions from clinical trials and post-marketing experience.
Very rare: Leukopenia, neutropenia and agranulocytosis
Common: Hyperkalaemia
Very rare: Hyponatraemia
Very rare: Dizziness, headache
Common: Hypotension
Very rare: Cough
Very rare: Nausea
Not known: Diarrhoea
Very rare: Increased liver enzymes, abnormal hepatic function or hepatitis
Very rare: Angioedema, rash, urticaria, pruritus
Very rare: Back pain, arthralgia, myalgia
Common: Renal impairment, including renal failure in susceptible patients (see section 4.4)
Hyperkalaemia and renal impairment are common in patients treated with Amias for the indication of heart failure. Periodic monitoring of serum creatinine and potassium is recommended (see section 4.4).
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme at: www.mhra.gov.uk/yellowcard.
Not applicable.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.