APADAZ Immediate-release tablet Ref.[9947] Active ingredients: Paracetamol

Source: FDA, National Drug Code (US)  Revision Year: 2019 

12.1. Mechanism of Action

Benzhydrocodone

Benzhydrocodone is a prodrug of hydrocodone.

Hydrocodone

Hydrocodone is a full opioid agonist with relative selectivity for the mu-opioid receptor, although it can interact with other opioid receptors at higher doses. The principal therapeutic action of hydrocodone is analgesia. Like all full opioid agonists, there is no ceiling effect for analgesia with hydrocodone. Clinically, dosage is titrated to provide adequate analgesia and may be limited by adverse reactions, including respiratory and CNS depression.

The precise mechanism of the analgesic action is unknown. However, specific CNS opioid receptors for endogenous compounds with opioid-like activity have been identified throughout the brain and spinal cord and are thought to play a role in the analgesic effects of this drug.

Acetaminophen

Acetaminophen is a non-opioid, non-salicylate analgesic. The site and mechanism for the analgesic effect of acetaminophen has not been determined but is thought to primarily involve central actions.

12.2. Pharmacodynamics

Hydrocodone

Effects on the Central Nervous System

Hydrocodone produces respiratory depression by direct action on brain stem respiratory centers. The respiratory depression involves a reduction in the responsiveness of the brain stem respiratory centers to both increases in carbon dioxide tension and electrical stimulation.

Hydrocodone causes miosis, even in total darkness. Pinpoint pupils are a sign of opioid overdose but are not pathognomonic (e.g., pontine lesions of hemorrhagic or ischemic origins may produce similar findings). Marked mydriasis rather than miosis may be seen with hypoxia in overdose situations.

Effects on the Gastrointestinal Tract and Other Smooth Muscle

Hydrocodone causes a reduction in motility associated with an increase in smooth muscle tone in the antrum of the stomach and duodenum. Digestion of food in the small intestine is delayed and propulsive contractions are decreased. Propulsive peristaltic waves in the colon are decreased, while tone may be increased to the point of spasm, resulting in constipation. Other opioid-induced effects may include a reduction in biliary and pancreatic secretions, spasm of sphincter of Oddi, and transient elevations in serum amylase.

Effects on the Cardiovascular System

Hydrocodone produces peripheral vasodilation which may result in orthostatic hypotension or syncope. Manifestations of histamine release and/or peripheral vasodilation may include pruritus, flushing, red eyes, sweating, and/or orthostatic hypotension.

Caution must be used in hypovolemic patients, such as those suffering acute myocardial infarction, because hydrocodone may cause or further aggravate their hypotension. Caution must also be used in patients with cor pulmonale who have received therapeutic doses of opioids.

Effects on the Endocrine System

Opioids inhibit the secretion of adrenocorticotropic hormone (ACTH), cortisol, and luteinizing hormone (LH) in humans [see Adverse Reactions (6.2)]. They also stimulate prolactin, growth hormone (GH) secretion, and pancreatic secretion of insulin and glucagon.

Chronic use of opioids may influence the hypothalamic-pituitary-gonadal axis, leading to androgen deficiency that may manifest as low libido, impotence, erectile dysfunction, amenorrhea, or infertility. The causal role of opioids in the clinical syndrome of hypogonadism is unknown because the various medical, physical, lifestyle, and psychological stressors that may influence gonadal hormone levels have not been adequately controlled for in studies conducted to date. Patients presenting with symptoms of androgen deficiency should undergo laboratory evaluation [see Adverse Reactions (6.2)].

Effects on the Immune System

Opioids have been shown to have a variety of effects on components of the immune system in in vitro and animal models. The clinical significance of these findings is unknown. Overall, the effects of opioids appear to be modestly immunosuppressive.

Concentration–Efficacy Relationships

The minimum effective analgesic concentration will vary widely among patients, especially among patients who have been previously treated with potent agonist opioids. The minimum effective analgesic concentration of hydrocodone for any individual patient may increase over time due to an increase in pain, the development of a new pain syndrome, and/or the development of analgesic tolerance [see Dosage and Administration (2.1, 2.5)].

Concentration–Adverse Reaction Relationships

There is a relationship between increasing hydrocodone plasma concentration and increasing frequency of dose-related opioid adverse reactions such as nausea, vomiting, CNS effects, and respiratory depression. In opioid-tolerant patients, the situation may be altered by the development of tolerance to opioid-related adverse reactions [see Dosage and Administration (2.1, 2.2, 2.4)].

12.3. Pharmacokinetics

APADAZ has met the bioequivalence criteria for hydrocodone AUC and Cmax to other immediate-release hydrocodone combination products. Benzhydrocodone was not detectable in plasma after oral administration in clinical studies, indicating that exposure to benzhydrocodone was minimal and transient. Steady state with APADAZ is attained within 24 to 36 hours of dosing. The systemic exposure to hydrocodone from APADAZ increases linearly after administration of single and multiple doses of 2 tablets of APADAZ.

Absorption

Single-Dose Studies

In 2 comparative bioavailability studies following oral administration of single dose to healthy subjects under fasted conditions, 6.12 mg/325 mg APADAZ tablet met the bioequivalence criteria for hydrocodone AUC and Cmax to immediate-release tablet of 7.5 mg hydrocodone/200 mg ibuprofen (N=28); and the bioequivalence criteria for acetaminophen AUC and Cmax to immediate-release tablet of 37.5 mg tramadol/325 mg acetaminophen (N=27).

In a comparative bioavailability study following oral administration of single dose under fasted conditions in 24 healthy subjects comparing 6.12 mg/325 mg APADAZ to immediate-release tablet of 7.5 mg hydrocodone/325 mg acetaminophen, APADAZ met the bioequivalence criteria for hydrocodone Cmax and AUC; and met the bioequivalence criteria for acetaminophen AUC, with comparable acetaminophen Cmax.

In a study to assess the effect of food on the bioavailability and pharmacokinetics of APADAZ in 38 healthy subjects compared to fasted conditions, co-administration of APADAZ with a high-fat, high-calorie meal showed a slight decrease in the rate but no change in the extent of hydrocodone absorption; and no difference in rate and extent of acetaminophen absorption. The effect of a high-fat, high-calorie meal on pharmacokinetics is similar between APADAZ and immediate-release tablet of 7.5 mg hydrocodone/325 mg acetaminophen. APADAZ can be administered without regard to food. The PK parameters for hydrocodone and acetaminophen after oral administration of APADAZ tablet, 6.12 mg/325 mg under fasted and fed conditions are shown in Table 4 below.

Table 4. PK parameters of hydrocodone and acetaminophen after oral administration of APADAZ tablet, 6.12 mg/325 mg under fasted and fed conditions:

Parameter* FedFasted
Hydrocodone
Cmax (ng/mL) 16.04 ± 3.60 (40) 19.18 ± 4.84 (38)
Tmax (h) 2.50 (40) [0.50–4.00] 1.25 (38) [0.50–3.00]
AUCinf (h•ng/mL) 130.91 ± 29.45 (40) 125.73 ± 36.78 (38)
t½ (h) 4.53 ± 0.70 (40) 4.33 ± 0.67 (38)
Acetaminophen
Cmax (μg/mL) 3.34 ± 1.01 (39) 4.05 ± 1.30 (38)
Tmax (h) 1.50 (39) [0.50–4.00] 1.00 (38) [0.50–3.00]
AUCinf (h•μg/mL) 15.0 ± 3.53 (36) 14.7 ± 3.87 (36)
t½ (h) 5.64 ± 1.58 (36) 4.78 ± 1.30 (36)

* Arithmetic mean ± standard deviation (N) except Tmax for which the median (N) [Range] is reported

Multiple-Dose Study

A multiple-dose study in 24 healthy subjects showed no measurable exposure to benzhydrocodone, when 2 tablets of APADAZ, 6.12/325 mg, was administered orally every 4 hours for a total of 13 doses. Steady state for hydrocodone and acetaminophen was achieved after 24 hours and between 24 and 36 hours, respectively. The accumulation ratios for hydrocodone Cmax and AUC values were 1.85-fold and 2.03-fold, respectively. The accumulation ratios for acetaminophen Cmax and AUC values were 1.38-fold and 1.80-fold, respectively.

Elimination

Hydrocodone is eliminated primarily from the kidneys. Elimination of acetaminophen is principally by liver metabolism and subsequent renal excretion of metabolites.

Metabolism

Benzhydrocodone is a prodrug of hydrocodone and is converted to active hydrocodone by enzymes in the intestinal tract.

Hydrocodone exhibits a complex pattern of metabolism, including O-demethylation, N-demethylation, and 6-keto reduction to the corresponding 6-α-and 6-β-hydroxy metabolites. Hydromorphone, a potent opioid, is formed from the O-demethylation of hydrocodone and contributes to the total analgesic effect of hydrocodone. The O- and N- demethylation processes are mediated by separate P-450 isoenzymes: CYP2D6 and CYP3A4, respectively [see Drug Interactions (7)].

Acetaminophen is primarily metabolized in the liver by first-order kinetics and involves three principal separate pathways:

  • conjugation with glucuronide;
  • conjugation with sulfate; and
  • oxidation via the cytochrome, P450-dependent, mixed-function oxidase enzyme pathway to form a reactive intermediate metabolite, which conjugates with glutathione and is then further metabolized to form cysteine and mercapturic acid conjugates. The principal cytochrome P450 isoenzyme involved appears to be CYP2E1, with CYP1A2 and CYP3A4 as additional pathways.

In adults, the majority of acetaminophen is conjugated with glucuronic acid and, to a lesser extent, with sulfate. These glucuronide-, sulfate-, and glutathione-derived metabolites lack biologic activity. In premature infants, newborns, and young infants, the sulfate conjugate predominates.

Excretion

Hydrocodone and its metabolites are eliminated primarily in the kidneys, with a mean plasma half-life of 4.5 hours.

The half-life of acetaminophen is about 2 to 3 hours in adults. It is somewhat shorter in children and somewhat longer in neonates and in cirrhotic patients. Acetaminophen is eliminated from the body primarily by formation of glucuronide and sulfate conjugates in a dose-dependent manner. Less than 9% of acetaminophen is excreted unchanged in the urine.

Specific Populations

Age

For hydrocodone, no significant pharmacokinetic differences based on age have been demonstrated. For APAP, a population pharmacokinetic analysis of data obtained from a clinical trial in patients with chronic pain treated with immediate-release tablets of 7.5 mg hydrocodone/325 mg acetaminophen, which included 55 patients between 65 and 75 years of age and 19 patients over 75 years of age, showed no significant changes in the pharmacokinetics of acetaminophen in elderly patients with normal renal and hepatic function [see Use in Specific Populations (8.5)].

Sex

For hydrocodone, no significant pharmacokinetic differences based on gender have been demonstrated.

Renal Impairment

The effect of renal insufficiency on the pharmacokinetics of APADAZ has not been determined [see Use in Specific Populations (8.7)].

Hepatic Impairment

Because acetaminophen is extensively metabolized by the liver, the use of APADAZ in patients with severe hepatic impairment or severe active liver disease is contraindicated. The pharmacokinetics and tolerability of APADAZ in patients with impaired hepatic function have not been studied [see Contraindications (4), Use in Specific Populations (8.6)].

13.1. Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenesis

Long-term studies to evaluate the carcinogenic potential of benzhydrocodone or the combination of benzhydrocodone and acetaminophen have not been conducted.

Long-term studies in mice and rats have been completed by the National Toxicology Program to evaluate the carcinogenic potential of acetaminophen. In 2-year feeding studies, F344/N rats and B6C3F1 mice were fed a diet containing acetaminophen up to 6000 ppm. Female rats demonstrated equivocal evidence of carcinogenic activity based on increased incidences of mononuclear cell leukemia at 0.8 times the maximum human daily dose (MHDD) of 3.9 grams/day, based on a body surface area comparison. In contrast, there was no evidence of carcinogenic activity in male rats (0.7 times) or mice (1.3-1.5 times the MHDD, based on a body surface area comparison).

Mutagenesis

Benzhydrocodone was positive in an in vitro mammalian cell chromosome aberration assay in the presence of a metabolic activation (S9 mix) and negative in the absence of metabolic activation. Benzhydrocodone was negative in an in vitro bacterial mutation assay as well as in the in vivo rat micronucleus and comet assays.

Acetaminophen was not mutagenic in the bacterial reverse mutation assay (Ames test). In contrast, acetaminophen tested positive in the in vitro mouse lymphoma assay and the in vitro chromosomal aberration assay using human lymphocytes. In the published literature, acetaminophen has been reported to be clastogenic when administered at 1500 mg/kg/day to the rat model (3.7-times the MHDD, based on a body surface area comparison). In contrast, no clastogenicity was noted at a dose of 750 mg/kg/day (1.9-times the MHDD, based on a body surface area comparison), suggesting a threshold effect.

Impairment of Fertility

No nonclinical fertility studies have been conducted with benzhydrocodone or the combination of benzhydrocodone and acetaminophen.

In studies conducted by the National Toxicology Program, fertility assessments with acetaminophen have been completed in Swiss CD-1 mice via a continuous breeding study. There were no effects on fertility parameters in mice consuming up to 1.8 times the MHDD of acetaminophen, based on a body surface area comparison. Although there was no effect on sperm motility or sperm density in the epididymis, there was a significant increase in the percentage of abnormal sperm in mice consuming 1.8 times the MHDD (based on a body surface comparison) and there was a reduction in the number of mating pairs producing a fifth litter at this dose, suggesting the potential for cumulative toxicity with chronic administration of acetaminophen near the upper limit of daily dosing.

Published studies in rodents report that oral acetaminophen treatment of male animals at doses that are 1.2 times the MHDD and greater (based on a body surface comparison) result in decreased testicular weights, reduced spermatogenesis, reduced fertility, and reduced implantation sites in females given the same doses. These effects appear to increase with the duration of treatment.

In a published mouse study, oral administration of 50 mg/kg acetaminophen to pregnant mice from Gestation Day 7 to delivery (0.06 times the MHDD) reduced the number of primordial follicles in female offspring and reduced the percentage of full term pregnancies and number of pups born to these females exposed to acetaminophen in utero.

In a published study, pregnant rats oral administration of 350 mg/kg acetaminophen (0.9 times the MHDD) from Gestation Day 13 to 21 (dams), reduced the number of germ cells in the fetal ovary and decreased ovary weight and reduced number of pups per litter in F1 females as well as reduced ovary weights in F2 females.

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.