AZATHIOPRINE / SANDOZ Film-coated tablets Ref.[6342] Active ingredients: Azathioprine

Source: Medicines & Healthcare Products Regulatory Agency (GB)  Revision Year: 2018  Publisher: Sandoz Limited, Frimley Business Park, Frimley, Camberley, Surrey, GU16 7SR, United Kingdom

Contraindications

Hypersensitivity to the active substance, to any of the excipients listed in section 6.1 or the metabolite 6- mercaptopurine. If patients also have a known hypersensitivity to 6-mercaptopurine, the consulting doctor must be informed of probable hypersensitivity to azathioprine.

Special warnings and precautions for use

Immunisation using a live organism vaccine has the potential to cause infection in immunocompromised hosts. Therefore, immunisations with live organism vaccines are not recommended (see section 4.5).

Co-administration of ribavirin and azathioprine is not advised. Ribavirin may reduce efficacy and increase toxicity of azathioprine (see section 4.5).

Monitoring

There are potential hazards in the use of azathioprine. It should be prescribed only if the patient can be adequately monitored for toxic effects throughout the duration of therapy.

Particular care should be taken to monitor haematological response and to reduce the maintenance dosage to the minimum required for clinical response.

It is suggested that during the first eight weeks of therapy, complete blood counts, including platelets, should be performed weekly or more frequently if high dosage is used or if severe renal and/or hepatic disorder is present. The blood count frequency may be reduced later in therapy, but it is suggested that complete blood counts are repeated monthly, or at least at intervals of not longer than 3 months.

At the first signs of an abnormal fall in blood counts, treatment should be interrupted immediately as leucocytes and platelets may continue to fall after treatment is stopped.

Patients receiving azathioprine should be instructed to report immediately any evidence of infection, unexpected bruising or bleeding or other manifestations of bone marrow depression. Bone marrow suppression is reversible if azathioprine is withdrawn early enough.

Azathioprine is hepatotoxic and liver function tests should be routinely monitored during treatment. More frequent monitoring may be advisable in those with pre-existing liver disease or receiving other potentially hepatotoxic therapy.

The patient should be instructed to discontinue azathioprine immediately if jaundice becomes apparent.

There are individuals with an inherited deficiency of the enzyme thiopurine methyltransferase (TPMT) who may be unusually sensitive to the myelosuppression effect of azathioprine and prone to developing rapid bone marrow depression following the initiation of treatment with azathioprine. This problem could be exacerbated by co-administration with drugs that inhibit TPMT, such as olsalazine, mesalazine or sulphasalazine. Also a possible association between decreased TPMT activity and secondary leukaemias and myelodysplasia has been reported in individuals receiving 6–mercaptopurine (the active metabolite of azathioprine) in combination with other cytotoxics (see section 4.8). Some laboratories offer testing for TPMT deficiency, although these tests have not been shown to identify all patients at risk of severe toxicity. Therefore close monitoring of blood counts is still necessary.

The dosage of azathioprine may need to be reduced when this agent is combined with other drugs whose primary or secondary toxicity is myelosuppression (see section 4.5: Cytostatic/myelosuppressive agents).

Patients with renal and/or hepatic impairment

Caution is advised during the administration of azathioprine in patients with renal impairment and/or hepatic impairment. Consideration should be given to reducing the dosage in these patients and haematological response should be carefully monitored (see section 4.2).

Lesch-Nyhan syndrome

Limited evidence suggests that azathioprine is not beneficial to patients with hypoxanthine- guanine- phosphoribosyltransferase deficiency (Lesch-Nyhan syndrome). Therefore, given the abnormal metabolism in these patients, it is not prudent to recommend that these patients should receive azathioprine.

Effects on fertility

Relief of chronic renal insufficiency by renal transplantation involving the administration of azathioprine has been accompanied by increased fertility in both male and female transplant recipients (see section 4.6).

Mutagenicity and Carcinogenicity

Chromosomal abnormalities have been demonstrated in both male and female patients treated with azathioprine. It is difficult to assess the role of azathioprine in the development of these abnormalities.

Chromosomal abnormalities, which disappear with time, have been demonstrated in lymphocytes from the off-spring of patients treated with azathioprine. Except in extremely rare cases, no overt physical evidence of abnormality has been observed in the offspring of patients treated with azathioprine. Azathioprine and long-wave ultraviolet light have been shown to have a synergistic clastogenic effect in patients treated with azathioprine for a range of disorders.

Patients receiving immunosuppressive therapy are at an increased risk of developing lymphoproliferative disorders and other malignancies, notably skin cancers (melanoma and non-melanoma), sarcomas (Kaposi’s and non-Kaposi’s) and uterine cervical cancer in situ. The increased risk appears to be related to the degree and duration of immunosuppression. It has been reported that discontinuation of immunosuppression may provide partial regression of the lymphoproliferative disorder.

A treatment regimen containing multiple immunosuppressants (including thiopurines) should therefore be used with caution as this could lead to lymphoproliferative disorders, some with reported fatalities. A combination of multiple immunosuppressants, given concomitantly increases the risk of Epstein-Barr virus (EBV)-associated lymphoproliferative disorders.

Patients receiving multiple immunosuppressive agents may be at risk of over-immunosuppression, therefore such therapy should be maintained at the lowest effective level.

As is usual for patients with increased risk for skin cancer, exposure to sunlight and UV light should be limited, and patients should wear protective clothing and use a sunscreen with a high protection factor.

Macrophage activation syndrome

Macrophage activation syndrome (MAS) is a known, life-threatening disorder that may develop in patients with autoimmune conditions, in particular with inflammatory bowel disease (IBD), and there could potentially be an increased susceptibility for developing the condition with the use of azathioprine. If MAS occurs, or is suspected, evaluation and treatment should be started as early as possible, and treatment with azathioprine should be discontinued. Physicians should be attentive to symptoms of infection such as EBV and cytomegalovirus (CMV), as these are known triggers for MAS.

Varicella Zoster Virus Infection (see also 4.8)

Infection with varicella zoster virus (VZV; chickenpox and herpes zoster) may become severe during the administration of immunosuppressants. Caution should be exercised especially with respect to the following:

Before starting the administration of immunosuppressants, the prescriber should check to see if the patient has a history of VZV. Serologic testing may be useful in determining previous exposure. Patients who have no history of exposure should avoid contact with individuals with chickenpox or herpes zoster.

If the patient is exposed to VZV, special care must be taken to avoid patients developing chickenpox or herpes zoster, and passive immunisation with varicella-zoster immunoglobulin (VZIG) may be considered.

If the patient is infected with VZV, appropriate measures should be taken, which may include antiviral therapy and supportive care.

Infections

Patients treated with 6-mercaptopurine alone or in combination with other immunosuppressive agents, including corticosteroids, have shown increased susceptibility to viral, fungal and bacterial infections, including severe or atypical infection, and viral reactivation. The infectious disease and complications may be more severe in these patients than in non-treated patients.

Prior exposure to or infection with varicella zoster virus should be taken into consideration prior to starting treatment. Local guidelines may be considered, including prophylactic therapy if necessary.

Serologic testing prior to starting treatment should be considered with respect to hepatitis B. Local guidelines may be considered, including prophylactic therapy for cases which have been confirmed positive by serologic testing. Cases of neutropenic sepsis have been reported in patients receiving 6- mercaptopurine for ALL.

Patients with NUDT15 variant

Patients with inherited mutated NUDT15 gene are at increased risk for severe 6-mercaptopurine toxicity, such as early leukopenia and alopecia, from conventional doses of thiopurine therapy. They generally require dose reduction, particularly those being NUDT15 variant homozygotes (see 4.2).

The frequency of NUDT15 c.415C>T has an ethnic variability of approximately 10% in East Asians, 4% in Hispanics, 0.2% in Europeans and 0% in Africans. In any case, close monitoring of blood counts is necessary.

Progressive Multifocal Leuk oencephalopathy (PML)

PML, an opportunistic infection caused by the JC virus, has been reported in patients receiving azathioprine with other immunosuppressive agents. Immunosuppressive therapy should be withheld at the first sign or symptoms suggestive of PML and appropriate evaluation undertaken to establish a diagnosis (see section 4.8).

Excipients(s) with k nown effect

This medicinal product contains lactose. Patients with rare hereditary problems of galactose intolerance, the Lapp lactase deficiency or glucose-galactose malabsorption should not take this medicine.

Interaction with other medicinal products and other forms of interaction

Vaccines

The immunosuppressive activity of azathioprine could result in an atypical and potentially deleterious response to live vaccines and so the administration of live vaccines to patients receiving azathioprine therapy is not recommended (see section 4.4).

A diminished response to killed vaccines is likely and such a response to hepatitis B vaccine has been observed among patients treated with a combination of azathioprine and corticosteroids.

A small clinical study has indicated that standard therapeutic doses of azathioprine do not deleteriously affect the response to polyvalent pneumococcal vaccine, as assessed on the basis of mean anti-capsular specific antibody concentration.

Effect of concomitant drugs on azathioprine

Ribavirin

Ribavirin inhibits the enzyme, inosine monophosphate dehydrogenase (IMPDH), leading to a lower production of the active 6-thioguanine nucleotides. Severe myelosuppression has been reported following concomitant administration of azathioprine and ribavirin; therefore co-administration is not advised (see section 4.4 and section 5.2 Metabolism).

Cytostatic/myelosuppressive agents (see section 4.4)

Where possible, concomitant administration of cytostatic drugs, or drugs which may have a myelosuppressive effect, such as penicillamine, should be avoided. There are conflicting clinical reports of interactions, resulting in serious haematological abnormalities, between azathioprine and co-trimoxazole.

There have been case reports suggesting that haematological abnormalities may develop due to the concomitant administration of azathioprine and ACE Inhibitors.

It has been suggested that cimetidine and indomethacin may have myelosuppressive effects which may be enhanced by concomitant administration of azathioprine.

Allopurinol/oxipurinol/thiopurinol

Xanthine oxidase activity is inhibited by allopurinol, oxipurinol and thiopurinol which results in reduced conversion of biologically active 6-thioinosinic acid to biologically inactive 6-thiouric acid.

When allopurinol, oxipurinol and/or thiopurinol are given concomitantly with 6-mercaptopurine or azathioprine, the dose of 6-mercaptopurine and azathioprine should be reduced to 25% of the original dose (see section 4.2).

Aminosalicylate

There is in vitro and in vivo evidence that aminosalicylate derivatives (eg. olsalazine, mesalazine or sulfasalazine) inhibit the TPMT enzyme. Therefore, lower doses of azathioprine may need to be considered when administered concomitantly with aminosalicylate derivatives (see also section 4.4).

Methotrexate

Methotrexate (20 mg/m² orally) increased 6-mercaptopurine AUC by approximately 31% and methotrexate (2 or 5 g/m² intravenously) increased 6-mercaptopurine AUC by 69 and 93%, respectively. Therefore, when azathioprine is administered concomitantly with high dose methotrexate, the dose should be adjusted to maintain a suitable white blood cell count.

Effect of azathioprine on other drugs

Anticoagulants

Inhibition of the anticoagulant effect of warfarin and acenocoumarol has been reported when co-administered with azathioprine; therefore higher doses of the anticoagulant may be needed. It is recommended that coagulation tests are closely monitored when anticoagulants are concurrently administered with azathioprine.

Neuromuscular block ing agents

Azathioprine can potentiate the neuromuscular blockade produced by depolarising agents such as succinylcholine and can reduce the blockade produced by non-depolarising agents such as tubocurarine. There is considerable variation in the potency of this interaction.

Fertility, pregnancy and lactation

Pregnancy

Substantial transplacental and transamniotic transmission of azathioprine and its metabolites from the mother to the foetus have been shown to occur.

Azathioprine should not be given to patients who are pregnant or likely to become pregnant in the near future without careful assessment of risk versus benefit.

Evidence of the teratogenicity of azathioprine in man is equivocal. As with all cytotoxic chemotherapy, adequate contraceptive precautions should be advised when either partner is receiving Azathioprine.

There have been reports of premature birth and low birth weight following maternal exposure to azathioprine, particularly in combination with corticosteroids. There have also been reports of spontaneous abortion following either maternal or paternal exposure.

Leucopenia and/or thrombocytopenia have been reported in a proportion of neonates whose mothers took azathioprine throughout their pregnancies.

Breastfeeding

6-Mercaptopurine has been identified in the colostrum and breast-milk of women receiving azathioprine treatment (see section 5.3). It is recommended that mothers receiving azathioprine should not breastfeed.

Fertility

See section 4.4 Effects on fertility.

Effects on ability to drive and use machines

There are no data on the effect of azathioprine on driving performance or the ability to operate machinery. A detrimental effect on these activities cannot be predicted from the pharmacology of the drug.

Undesirable effects

For this product there is no modern clinical documentation which can be used as support for determining the frequency of undesirable effects. Undesirable effects may vary in their incidence depending on the indication. The following convention has been utilised for the classification of frequency:

Very common (≥1/10)
Common (≥1/100 to <1/10)
Uncommon (≥1/1,000 to <1/100)
Rare (≥1/10,000 to <1/1,000)
Very rare (<1/10,000)
Not known (cannot be estimated from the available data)

Infection and infestations

Very common: viral, fungal and bacterial infections in transplant patients receiving azathioprine in combination with other immunosuppressants

Uncommon: viral, fungal and bacterial infections in other patient populations, bacterial and viral infections, infections associated with neutropenia

Patients receiving azathioprine alone, or in combination with other immunosupressants, particularly corticosteroids, have shown increased susceptibility to viral, fungal and bacterial infections, including severe or atypical infection with varicella, herpes zoster and other infectious agents (see also section 4.4).

Very rare: cases of JC virus associated PML have been reported following the use of azathioprine in combination with other immunosuppressants (see section 4.4).

Neoplasms benign and malignant (including cysts and polyps)

Rare: neoplasms including lymphoproliferative disorders, skin cancers (melanomas and non-melanomas), sarcomas (Kaposi’s and non-Kaposi’s) and uterine cervical cancer in situ, myelodysplasia (see also section 4.4).

The risk of developing non-Hodgkin’s lymphomas and other malignancies, notably skin cancers (melanomas and non- melanomas), sarcomas (Kaposi’s and non-Kaposi’s) and uterine cervical cancer in situ, is increased in patients who receive immunosuppressive drugs, particularly in transplant recipients receiving aggressive treatment and such therapy should be maintained at the lowest effective levels. The increased risk of developing non-Hodgkin’s lymphomas in immunosuppressed rheumatoid arthritis patients compared with the general population appears to be related at least in part to the disease itself.

There have been rare reports of acute myeloid leukaemia and myelodysplasia (some in association with chromosomal abnormalities).

Blood and lymphatic system disorders

Very common: depression of bone marrow function; leucopenia

Common: thrombocytopenia

Uncommon: anaemia

Rare: agranulocytosis, pancytopenia, aplastic anaemia, megaloblastic anaemia, erythroid hypoplasia

Azathioprine may be associated with a dose-related, generally reversible, depression of bone marrow function, most frequently expressed as leucopenia, but also sometimes as anaemia and thrombocytopenia and rarely as agranulocytosis, pancytopenia and aplastic anaemia. These occur particularly in patients predisposed to myelotoxicity, such as those with TPMT deficiency and renal or hepatic insufficiency and in patients failing to reduce the dose of azathioprine when receiving concurrent allopurinol therapy.

Reversible, dose-related increases in mean corpuscular volume and red cell haemoglobin content have occurred in association with azathioprine therapy. Megaloblastic bone marrow changes have also been observed but severe megaloblastic anaemia and erythroid hypoplasia are rare.

Immune system disorders

Uncommon: hypersensitivity reactions

Very rare: Stevens-Johnson syndrome and toxic epidermal necrolysis

Several different clinical syndromes, which appear to be idiosyncratic manifestations of hypersensitivity, have been described occasionally following administration of azathioprine . Clinical features include general malaise, dizziness, nausea, vomiting, diarrhoea, fever, rigors, exanthema, rash, vasculitis, myalgia, arthralgia, hypotension, renal dysfunction, hepatic dysfunction and cholestasis (see Hepato-biliary disorders).

In many cases, rechallenge has confirmed an association with azathioprine.

Immediate withdrawal of azathioprine and institution of circulatory support where appropriate have led to recovery in the majority of cases.

Other marked underlying pathology has contributed to the very rare deaths reported.

Following a hypersensitivity reaction to azathioprine, the necessity for continued administration of azathioprine should be carefully considered on an individual basis.

Respiratory, thoracic and mediastinal disorders

Very rare: reversible pneumonitis

Gastrointestinal disorders

Common: nausea

A minority of patients experience nausea when first given azathioprine. This appears to be relieved by administering the tablets after meals.

Uncommon: pancreatitis

Very rare: colitis, diverticulitis and bowel perforation reported in transplant population, severe diarrhoea in inflammatory bowel disease population

Serious complications, including colitis, diverticulitis and bowel perforation, have been described in transplant recipients receiving immunosuppressive therapy. However, the aetiology is not clearly established and high-dose corticosteroids may be implicated. Severe diarrhoea, recurring on rechallenge, has been reported in patients treated with azathioprine for inflammatory bowel disease. The possibility that exacerbation of symptoms might be drug-related should be borne in mind when treating such patients.

Pancreatitis has been reported in a small percentage of patients on azathioprine therapy, particularly in renal transplant patients and those diagnosed as having inflammatory bowel disease. There are difficulties in relating the pancreatitis to the administration of one particular drug, although rechallenge has confirmed an association with azathioprine on occasions.

Hepato-biliary disorders

Uncommon: cholestasis and deterioration of liver function tests

Rare: life-threatening hepatic damage

Cholestasis and deterioration of liver function have occasionally been reported in association with azathioprine therapy and are usually reversible on withdrawal of therapy. This may be associated with symptoms of a hypersensitivity reaction (see Immune system disorders).

Rare, but life-threatening hepatic damage associated with chronic administration of azathioprine has been described primarily in transplant patients. Histological findings include sinusoidal dilatation, peliosis hepatis, veno-occlusive disease and nodular regenerative hyperplasia. In some cases withdrawal of azathioprine has resulted in either a temporary or permanent improvement in liver histology and symptoms.

Skin and subcutaneous tissue disorders

Rare: alopecia

Hair loss has been described on a number of occasions in patients receiving azathioprine and other immunosuppressive agents. In many instances the condition resolved spontaneously despite continuing therapy. The relationship between alopecia and azathioprine treatment is uncertain.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme (www.mhra.gov.uk/yellowcard).

Incompatibilities

Not applicable.

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.