Source: Υπουργείο Υγείας (CY) Revision Year: 2018 Publisher: MEDOCHEMIE LTD, 1-10 Constantinoupoleos street, 3011 Limassol, Cyprus
Pharmacotherapeutic group: Blood glucose lowering drugs. Biguanides
ATC code: A10BA02
Metformin is a biguanide with antihyperglycaemic effects, lowering both basal and postprandial plasma glucose. It does not stimulate insulin secretion and therefore does not produce hypoglycaemia.
Metformin may act via 3 mechanisms:
(1) reduction of hepatic glucose production by inhibiting gluconeogenesis and glycogenolysis (2) in muscle, by increasing insulin sensitivity, improving peripheral glucose uptake and utilisation (3) and delay of intestinal glucose absorption.
Metformin stimulates intracellular glycogen synthesis by acting on glycogen synthase.
Metformin increases the transport capacity of all types of membrane glucose transporters (GLUT).
In clinical studies, use of metformin was associated with either a stable body weight or modest weight loss.
In humans, independently of its action on glycaemia, metformin has favourable effects on lipid metabolism. This has been shown at therapeutic doses in controlled, medium-term or long-term clinical studies: metformin reduces total cholesterol, LDL cholesterol and triglyceride levels.
The prospective randomised (UKPDS) study has established the long-term benefit of intensive blood glucose control in adult patients with type 2 diabetes.
Analysis of the results for overweight patients treated with metformin after failure of diet alone showed:
For metformin used as second-line therapy, in combination with a sulphonylurea, benefit regarding clinical outcome has not been shown.
In type 1 diabetes, the combination of metformin and insulin has been used in selected patients, but the clinical benefit of this combination has not been formally established.
Controlled clinical studies in a limited paediatric population aged 10-16 years treated during 1 year demonstrated a similar response in glycaemic control to that seen in adults.
After an oral dose of metformin, Tmax is reached in approximately 2.5 hours. Absolute bioavailability of a 500mg or 850mg metformin tablet is approximately 50-60% in healthy subjects. After an oral dose, the non-absorbed fraction recovered in faeces was 20-30%.
After oral administration, metformin absorption is saturable and incomplete. It is assumed that the pharmacokinetics of metformin absorption are non-linear.
At the usual metformin doses and dosing schedules, steady state plasma concentrations are reached within 24 to 48 hours and are generally less than 1 μg/ml. In controlled clinical trials, maximum metformin plasma levels (Cmax) did not exceed 4 μg/ml, even at maximum doses.
Food decreases the extent and slightly delays the absorption of metformin. Following administration of a dose of 850 mg, a 40% lower plasma peak concentration, a 25% decrease in AUC (area under the curve) and a 35 minute prolongation of time to peak plasma concentration were observed. The clinical relevance of these decreases is unknown.
Plasma protein binding is negligible. Metformin partitions into erythrocytes. The blood peak is lower than the plasma peak and appears at approximately the same time. The red blood cells most likely represent a secondary compartment of distribution. The mean Vd ranged between 63-276 L.
Metformin is excreted unchanged in the urine. No metabolites have been identified in humans.
Renal clearance of metformin is >400 ml/min, indicating that metformin is eliminated by glomerular filtration and tubular secretion. Following an oral dose, the apparent terminal elimination half-life is approximately 6.5 hours.
When renal function is impaired, renal clearance is decreased in proportion to that of creatinine and thus the elimination half-life is prolonged, leading to increased levels of metformin in plasma.
The available data in subjects with moderate renal insufficiency are scarce and no reliable estimation of the systemic exposure to metformin in this subgroup as compared to subjects with normal renal function could be made. Therefore, the dose adaptation should be made upon clinical efficacy/tolerability considerations (see section 4.2).
Single dose study: After single doses of metformin 500 mg, paediatric patients have shown similar pharmacokinetic profile to that observed in healthy adults.
Multiple dose study: Data are restricted to one study. After repeated doses of 500 mg twice daily for 7 days in paediatric patients the peak plasma concentration (Cmax) and systemic exposure (AUC0-t) were reduced by approximately 33% and 40%, respectively compared to diabetic adults who received repeated doses of 500 mg twice daily for 14 days. As the dose is individually titrated based on glycaemic control, this is of limited clinical relevance.
Preclinical data reveal no special hazard for humans based on conventional studies on safety pharmacology, repeated dose toxicity, genotoxicity, carcinogenic potential, toxicity reproduction.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.