Source: Medicines & Healthcare Products Regulatory Agency (GB) Revision Year: 2018 Publisher: Wockhardt UK Ltd, Ash Road North, Wrexham, LL13 9UF, UK
Hypersensitivity to the active substance, to any other cephalosporin or to any of the excipients listed in section 6.1
History of severe hypersensitivity (e.g. anaphylactic reaction) to any other type of beta-lactam antibacterial agent (penicillins, monobactams and carbapenems).
Ceftriaxone is contraindicated in:
* In vitro studies have shown that ceftriaxone can displace bilirubin from its serum albumin binding sites leading to a possible risk of bilirubin encephalopathy in these patients.
Contraindications to lidocaine must be excluded before intramuscular injection of ceftriaxone when lidocaine solution is used as a solvent (see section 4.4). See information in the Summary of Product Characteristics of lidocaine, especially contraindications.
Ceftriaxone solutions containing lidocaine should never be administered intravenously.
As with all beta-lactam antibacterial agents, serious and occasionally fatal hypersensitivity reactions have been reported (see section 4.8). In case of severe hypersensitivity reactions, treatment with ceftriaxone must be discontinued immediately and adequate emergency measures must be initiated. Before beginning treatment, it should be established whether the patient has a history of severe hypersensitivity reactions to ceftriaxone, to other cephalosporins or to any other type of beta-lactam agent. Caution should be used if ceftriaxone is given to patients with a history of non-severe hypersensitivity to other beta-lactam agents.
Severe cutaneous adverse reactions (Stevens Johnson syndrome or Lyell’s syndrome/toxic epidermal necrolysis) have been reported; however, the frequency of these events is not known (see section 4.8).
Cases of fatal reactions with calcium-ceftriaxone precipitates in lungs and kidneys in premature and full-term neonates aged less than 1 month have been described. At least one of them had received ceftriaxone and calcium at different times and through different intravenous lines. In the available scientific data, there are no reports of confirmed intravascular precipitations in patients, other than neonates, treated with ceftriaxone and calcium-containing solutions or any other calcium-containing products. In vitro studies demonstrated that neonates have an increased risk of precipitation of ceftriaxone-calcium compared to other age groups.
In patients of any age ceftriaxone must not be mixed or administered simultaneously with any calcium-containing intravenous solutions, even via different infusion lines or at different infusion sites. However, in patients older than 28 days of age ceftriaxone and calcium-containing solutions may be administered sequentially one after another if infusion lines at different sites are used or if the infusion lines are replaced or thoroughly flushed between infusions with physiological salt-solution to avoid precipitation. In patients requiring continuous infusion with calcium-containing total parenteral nutrition (TPN) solutions, healthcare professionals may wish to consider the use of alternative antibacterial treatments which do not carry a similar risk of precipitation. If the use of ceftriaxone is considered necessary in patients requiring continuous nutrition, TPN solutions and ceftriaxone can be administered simultaneously, albeit via different infusion lines at different sites. Alternatively, infusion of TPN solution could be stopped for the period of ceftriaxone infusion and the infusion lines flushed between solutions (see sections 4.3, 4.8, 5.2 and 6.2).
Safety and effectiveness of Ceftriaxone in neonates, infants and children have been established for the dosages described under Posology and Method of Administration (see section 4.2). Studies have shown that ceftriaxone, like some other cephalosporins, can displace bilirubin from serum albumin.
Ceftriaxone is contraindicated in premature and full-term neonates at risk of developing bilirubin encephalopathy (see section 4.3).
An immune mediated haemolytic anaemia has been observed in patients receiving cephalosporin class antibacterials including Ceftriaxone (see section 4.8). Severe cases of haemolytic anaemia, including fatalities, have been reported during Ceftriaxone treatment in both adults and children.
If a patient develops anaemia while on ceftriaxone, the diagnosis of a cephalosporin-associated anaemia should be considered and ceftriaxone discontinued until the aetiology is determined.
During prolonged treatment complete blood count should be performed at regular intervals.
Antibacterial agent-associated colitis and pseudo-membranous colitis have been reported with nearly all antibacterial agents, including ceftriaxone, and may range in severity from mild to life-threatening. Therefore, it is important to consider this diagnosis in patients who present with diarrhoea during or subsequent to the administration of ceftriaxone (see section 4.8). Discontinuation of therapy with ceftriaxone and the administration of specific treatment for Clostridium difficile should be considered. Medicinal products that inhibit peristalsis should not be given.
Superinfections with non-susceptible micro-organisms may occur as with other antibacterial agents.
In severe renal and hepatic insufficiency, close clinical monitoring for safety and efficacy is advised (see section 4.2).
Interference with Coombs tests may occur, as Ceftriaxone may lead to false-positive test results. Ceftriaxone can also lead to false-positive test results for galactosaemia (see section 4.8).
Non-enzymatic methods for the glucose determination in urine may give false-positive results. Urine glucose determination during therapy with Ceftriaxone should be done enzymatically (see section 4.8).
The presence of ceftriaxone may falsely lower estimated blood glucose values obtained with some blood glucose monitoring systems. Please refer to instructions for use for each system. Alternative testing methods should be used if necessary.
Each gram of ceftriaxone sodium contains approximately 3.6 mmol sodium. This should be taken into consideration in patients on a controlled sodium diet.
Ceftriaxone has a limited spectrum of antibacterial activity and may not be suitable for use as a single agent for the treatment of some types of infections unless the pathogen has already been confirmed (see section 4.2). In polymicrobial infections, where suspected pathogens include organisms resistant to ceftriaxone, administration of an additional antibiotic should be considered.
In case a lidocaine solution is used as a solvent, ceftriaxone solutions must only be used for intramuscular injection. Contraindications to lidocaine, warnings and other relevant information as detailed in the Summary of Product Characteristics of lidocaine must be considered before use (see section 4.3). The lidocaine solution should never be administered intravenously.
When shadows are observed on sonograms, consideration should be given to the possibility of precipitates of calcium ceftriaxone. Shadows, which have been mistaken for gallstones, have been detected on sonograms of the gallbladder and have been observed more frequently at ceftriaxone doses of 1 g per day and above. Caution should be particularly considered in the paediatric population. Such precipitates disappear after discontinuation of ceftriaxone therapy. Rarely precipitates of calcium ceftriaxone have been associated with symptoms. In symptomatic cases, conservative nonsurgical management is recommended and discontinuation of ceftriaxone treatment should be considered by the physician based on specific benefit risk assessment (see section 4.8).
Cases of pancreatitis, possibly of biliary obstruction aetiology, have been reported in patients treated with Ceftriaxone (see section 4.8). Most patients presented with risk factors for biliary stasis and biliary sludge e.g. preceding major therapy, severe illness and total parenteral nutrition. A trigger or cofactor of Ceftriaxone-related biliary precipitation cannot be ruled out.
Cases of renal lithiasis have been reported, which is reversible upon discontinuation of ceftriaxone (see section 4.8). In symptomatic cases, sonography should be performed. Use in patients with history of renal lithiasis or with hypercalciuria should be considered by the physician based on specific benefit risk assessment.
Calcium-containing diluents, such as Ringer’s solution or Hartmann’s solution, should not be used to reconstitute Ceftriaxone vials or to further dilute a reconstituted vial for intravenous administration because a precipitate can form.
Precipitation of ceftriaxone-calcium can also occur when ceftriaxone is mixed with calcium-containing solutions in the same intravenous administration line.
Ceftriaxone must not be administered simultaneously with calcium-containing intravenous solutions, including continuous calcium-containing infusions such as parenteral nutrition via a Y-site. However, in patients other than neonates, ceftriaxone and calcium-containing solutions may be administered sequentially of one another if the infusion lines are thoroughly flushed between infusions with a compatible fluid.
In vitro studies using adult and neonatal plasma from umbilical cord blood demonstrated that neonates have an increased risk of precipitation of ceftriaxone-calcium (see sections 4.2, 4.3, 4.4, 4.8 and 6.2).
Concomitant use with oral anticoagulants may increase the anti-vitamin K effect and the risk of bleeding. It is recommended that the International Normalised Ratio (INR) is monitored frequently and the posology of the anti-vitamin K drug adjusted accordingly, both during and after treatment with ceftriaxone (see section 4.8).
There is conflicting evidence regarding a potential increase in renal toxicity of aminoglycosides when used with cephalosporins. The recommended monitoring of aminoglycoside levels (and renal function) in clinical practice should be closely adhered to in such cases.
In an in-vitro study antagonistic effects have been observed with the combination of chloramphenicol and ceftriaxone. The clinical relevance of this finding is unknown.
There have been no reports of an interaction between ceftriaxone and oral calcium-containing products or interaction between intramuscular ceftriaxone and calcium-containing products (intravenous or oral).
In patients treated with ceftriaxone, the Coombs' test may lead to false-positive test results.
Ceftriaxone, like other antibiotics, may result in false-positive tests for galactosaemia.
Likewise, non-enzymatic methods for glucose determination in urine may yield false-positive results. For this reason, glucose level determination in urine during therapy with ceftriaxone should be carried out enzymatically.
No impairment of renal function has been observed after concurrent administration of large doses of ceftriaxone and potent diuretics (e.g. furosemide).
Simultaneous administration of probenecid does not reduce the elimination of ceftriaxone.
Ceftriaxone crosses the placental barrier. There are limited amounts of data from the use of ceftriaxone in pregnant women. Animal studies do not indicate direct or indirect harmful effects with respect to embryonal/foetal, perinatal and postnatal development (see section 5.3). Ceftriaxone should only be administered during pregnancy and in particular in the first trimester of pregnancy if the benefit outweighs the risk.
Ceftriaxone is excreted into human milk in low concentrations but at therapeutic doses of ceftriaxone no effects on the breastfed infants are anticipated. However, a risk of diarrhoea and fungal infection of the mucous membranes cannot be excluded. The possibility of sensitisation should be taken into account. A decision must be made whether to discontinue breast-feeding or to discontinue/abstain from ceftriaxone therapy, taking into account the benefit of breast feeding for the child and the benefit of therapy for the woman.
Reproductive studies have shown no evidence of adverse effects on male or female fertility.
During treatment with ceftriaxone, undesirable effects may occur (e.g. dizziness), which may influence the ability to drive and use machines (see section 4.8). Patients should be cautious when driving or operating machinery.
The most frequently reported adverse reactions for ceftriaxone are eosinophilia, leucopenia, thrombocytopenia, diarrhoea, rash, and hepatic enzymes increased.
Data to determine the frequency of ceftriaxone ADRs was derived from clinical trials.
The following convention has been used for the classification of frequency:
Very common (≥1/10)
Common (≥1/100 - <1/10)
Uncommon (≥1/1000 - <1/100)
Rare (≥1/10000 - <1/1000)
Not known (cannot be estimated from the available data)
Uncommon: Genital fungal infection
Rare: Pseudomembranous colitisb
Not Knowna: Superinfectionb
Common: Eosinophilia, Leucopenia, Thrombocytopenia
Uncommon: Granulocytopenia, Anaemia, Coagulopathy
Not Knowna: Haemolytic anaemiab, Agranulocytosis
Not Knowna: Anaphylactic shock, Anaphylactic reaction, Anaphylactoid reaction, Hypersensitivityb
Uncommon: Headache, Dizziness
Not Knowna: Convulsion
Not Knowna: Vertigo
Rare: Bronchospasm
Common: Diarrhoeab, Loose stools
Uncommon: Nausea, Vomiting
Not Knowna: Pancreatitisb, Stomatitis, Glossitis
Common: Hepatic enzyme increased
Not Knowna: Gall bladder precipitationb, Kernicterus
Common: Rash
Uncommon: Pruritus
Rare: Urticaria
Not Knowna: Stevens Johnson Syndromeb, Toxic epidermal necrolysisb, Erythema multiforme, Acute generalised exanthematous pustulosis
Rare: Haematuria, Glycosuria
Not Knowna: Oliguria, Renal precipitation (reversible)
Uncommon: Phlebitis, Injection site pain, Pyrexia
Rare: Oedema, Chills
Uncommon: Blood creatinine increased
Not Knowna: Coombs test false positiveb, Galactosaemia test false positiveb, Non enzymatic methods for glucose determination false positiveb
a Based on post-marketing reports. Since these reactions are reported voluntarily from a population of uncertain size, it is not possible to reliably estimate their frequency which is therefore categorised as not known.
b See section 4.4
Reports of diarrhoea following the use of ceftriaxone may be associated with Clostridium difficile. Appropriate fluid and electrolyte management should be instituted (see section 4.4).
Rarely, severe, and in some cases, fatal, adverse reactions have been reported in pre-term and full-term neonates (aged <28 days) who had been treated with intravenous ceftriaxone and calcium. Precipitations of ceftriaxone-calcium salt have been observed in lung and kidneys post-mortem. The high risk of precipitation in neonates is a result of their low blood volume and the longer half-life of ceftriaxone compared with adults (see sections 4.3, 4.4, and 5.2).
Cases of ceftriaxone precipitation in the urinary tract have been reported, mostly in children treated with high doses (e.g. ≥80 mg/kg/day or total doses exceeding 10 grams) and who have other risk factors (e.g. dehydration, confinement to bed). This event may be asymptomatic or symptomatic, and may lead to ureteric obstruction and postrenal acute renal failure, but is usually reversible upon discontinuation of ceftriaxone (see section 4.4).
Precipitation of ceftriaxone calcium salt in the gallbladder has been observed, primarily in patients treated with doses higher than the recommended standard dose. In children, prospective studies have shown a variable incidence of precipitation with intravenous application – above 30% in some studies. The incidence appears to be lower with slow infusion (20-30 minutes). This effect is usually asymptomatic, but the precipitations have been accompanied by clinical symptoms such as pain, nausea and vomiting in rare cases. Symptomatic treatment is recommended in these cases. Precipitation is usually reversible upon discontinuation of ceftriaxone (see section 4.4).
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme at www.mhra.gov.uk/yellowcard or search for MHRA Yellow Card in the Google Play or Apple App Store.
Based on literature reports, ceftriaxone is not compatible with amsacrine, vancomycin, fluconazole and aminoglycosides and labetalol.
Solutions containing ceftriaxone should not be mixed with or added to other agents except those mentioned in section 6.6
In particular, diluents containing calcium, (e.g. Ringer’s solution, Hartmann’s solution) should not be used to reconstitute ceftriaxone vials or to further dilute a reconstituted vial for IV administration because a precipitate can form. Ceftriaxone must not be mixed or administered simultaneously with calcium containing solutions including total parenteral nutrition (see section 4.2, 4.3, 4.4 and 4.8).
If treatment with a combination of another antibiotic with Ceftriaxone is intended, administration should not occur in the same syringe or in the same infusion solution.
This medicinal product must not be mixed with other medicinal products except those mentioned in section 6.6.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.