Source: Medicines & Healthcare Products Regulatory Agency (GB) Revision Year: 2018 Publisher: Pfizer Limited, Ramsgate Road, Sandwich, Kent, CT13 9NJ, United Kingdom
Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.
Known hypersensitivity to sulfonamides.
Active peptic ulceration or gastrointestinal (GI) bleeding.
Patients who have experienced asthma, acute rhinitis, nasal polyps, angioneurotic oedema, urticaria or other allergic-type reactions after taking acetylsalicylic acid (aspirin) or other non-steroidal anti-inflammatory drugs (NSAIDs) including COX-2 inhibitors.
In pregnancy and in women of childbearing potential unless using an effective method of contraception (see section 4.6). Celecoxib has been shown to cause malformations in the two animal species studied (see sections 4.6 and 5.3). The potential for human risk in pregnancy is unknown but cannot be excluded.
Breast-feeding (see sections 4.6 and 5.3).
Severe hepatic dysfunction (serum albumin <25 g/l or Child-Pugh score ≥10).
Patients with estimated creatinine clearance <30 ml/min.
Inflammatory bowel disease.
Congestive heart failure (NYHA II-IV).
Established ischaemic heart disease, peripheral arterial disease and/or cerebrovascular disease.
Upper and lower gastrointestinal complications [perforations, ulcers or bleedings (PUBs)], some of them resulting in fatal outcome, have occurred in patients treated with celecoxib. Caution is advised with treatment of patients most at risk of developing a gastrointestinal complication with NSAIDs; the elderly, patients using any other NSAID or acetylsalicylic acid or glucocorticoids concomitantly, patients using alcohol, or patients with a prior history of gastrointestinal disease, such as ulceration and GI bleeding.
There is further increase in the risk of gastrointestinal adverse effects for celecoxib (gastrointestinal ulceration or other gastrointestinal complications), when celecoxib is taken concomitantly with acetylsalicylic acid (even at low doses).
A significant difference in GI safety between selective COX-2 inhibitors + acetylsalicylic acid vs. NSAIDs + acetylsalicylic acid has not been demonstrated in long-term clinical trials (see section 5.1).
The concomitant use of celecoxib and a non-aspirin NSAID should be avoided.
Increased number of serious cardiovascular (CV) events, mainly myocardial infarction, has been found in a long-term placebo-controlled study in subjects with sporadic adenomatous polyps treated with celecoxib at doses of 200 mg BID and 400 mg BID compared to placebo (see section 5.1).
As the cardiovascular risks of celecoxib may increase with dose and duration of exposure, the shortest duration possible and the lowest effective daily dose should be used. NSAIDs, including COX-2 selective inhibitors, have been associated with increased risk of cardiovascular and thrombotic adverse events when taken long term. The exact magnitude of the risk associated with a single dose has not been determined, nor has the exact duration of therapy associated with increased risk. The patient’s need for symptomatic relief and response to therapy should be re-evaluated periodically, especially in patients with osteoarthritis (see sections 4.2, 4.3, 4.8 and 5.1).
Patients with significant risk factors for cardiovascular events (e.g. hypertension, hyperlipidaemia, diabetes mellitus, smoking) should only be treated with celecoxib after careful consideration (see section 5.1).
COX-2 selective inhibitors are not a substitute for acetylsalicylic acid for prophylaxis of cardiovascular thrombo-embolic diseases because of their lack of antiplatelet effects. Therefore, antiplatelet therapies should not be discontinued (see section 5.1).
As with other medicinal products known to inhibit prostaglandin synthesis, fluid retention and oedema have been observed in patients taking celecoxib. Therefore, celecoxib should be used with caution in patients with history of cardiac failure, left ventricular dysfunction or hypertension, and in patients with pre-existing oedema from any other reason, since prostaglandin inhibition may result in deterioration of renal function and fluid retention. Caution is also required in patients taking diuretic treatment or otherwise at risk of hypovolaemia.
As with all NSAIDS, celecoxib can lead to the onset of new hypertension or worsening of pre-existing hypertension, either of which may contribute to the increased incidence of cardiovascular events. Therefore, blood pressure should be monitored closely during the initiation of therapy with celecoxib and throughout the course of therapy.
Compromised renal or hepatic function and especially cardiac dysfunction are more likely in the elderly and therefore medically appropriate supervision should be maintained.
NSAIDs, including celecoxib, may cause renal toxicity. Clinical trials with celecoxib have shown renal effects similar to those observed with comparator NSAIDs. Patients at greatest risk for renal toxicity are those with impaired renal function, heart failure, liver dysfunction, those taking diuretics, ACE-inhibitors, angiotensin II receptor antagonists, and the elderly (see section 4.5). Such patients should be carefully monitored while receiving treatment with celecoxib.
Some cases of severe hepatic reactions, including fulminant hepatitis (some with fatal outcome), liver necrosis and, hepatic failure (some with fatal outcome or requiring liver transplant), have been reported with celecoxib. Among the cases that reported time to onset, most of the severe adverse hepatic events developed within one month after initiation of celecoxib treatment (see section 4.8).
If during treatment, patients deteriorate in any of the organ system functions described above, appropriate measures should be taken and discontinuation of celecoxib therapy should be considered.
Celecoxib inhibits CYP2D6. Although it is not a strong inhibitor of this enzyme, a dose reduction may be necessary for individually dose-titrated medicinal products that are metabolised by CYP2D6 (see section 4.5).
Patients known to be CYP2C9 poor metabolisers should be treated with caution (see section 5.2).
Serious skin reactions, some of them fatal, including exfoliative dermatitis, Stevens-Johnson syndrome, and toxic epidermal necrolysis, have been reported very rarely in association with the use of celecoxib (see section 4.8). Patients appear to be at highest risk for these reactions early in the course of therapy: the onset of the reaction occurring in the majority of cases within the first month of treatment. Serious hypersensitivity reactions (including anaphylaxis, angioedema and drug rash with eosinophilia and systemic symptoms (DRESS), or hypersensitivity syndrome), have been reported in patients receiving celecoxib (see section 4.8). Patients with a history of sulfonamide allergy or any drug allergy may be at greater risk of serious skin reactions or hypersensitivity reactions (see section 4.3). Celecoxib should be discontinued at the first appearance of skin rash, mucosal lesions, or any other sign of hypersensitivity.
Celecoxib may mask fever and other signs of inflammation.
In patients on concurrent therapy with warfarin, serious bleeding events, some of them fatal, have been reported. Increased prothrombin time (INR) with concurrent therapy has been reported. Therefore, this should be closely monitored in patients receiving warfarin/coumarin-type oral anticoagulants, particularly when therapy with celecoxib is initiated or celecoxib dose is changed (see section 4.5). Concomitant use of anticoagulants with NSAIDS may increase the risk of bleeding. Caution should be exercised when combining celecoxib with warfarin or other oral anticoagulants, including novel anticoagulants (e.g. apixaban, dabigatran, and rivaroxaban).
Celebrex 100 mg and 200 mg capsules contain lactose (149.7 mg and 49.8 mg, respectively). Patients with rare hereditary problems of galactose intolerance, the Lapp lactase deficiency or glucose-galactose malabsorption should not take this medicine.
Anticoagulant activity should be monitored particularly in the first few days after initiating or changing the dose of celecoxib in patients receiving warfarin or other anticoagulants since these patients have an increased risk of bleeding complications. Therefore, patients receiving oral anticoagulants should be closely monitored for their prothrombin time INR, particularly in the first few days when therapy with celecoxib is initiated or the dose of celecoxib is changed (see section 4.4). Bleeding events in association with increases in prothrombin time have been reported, predominantly in the elderly, in patients receiving celecoxib concurrently with warfarin, some of them fatal.
NSAIDs may reduce the effect of anti-hypertensive medicinal products including ACE-inhibitors, angiotensin II receptor antagonists, diuretics and beta-blockers. As for NSAIDs, the risk of acute renal insufficiency, which is usually reversible, may be increased in some patients with compromised renal function (e.g. dehydrated patients, patients on diuretics, or elderly patients) when ACE-inhibitors, angiotensin II receptor antagonists, and/or diuretics are combined with NSAIDs, including celecoxib (see section 4.4). Therefore, the combination should be administered with caution, especially in the elderly. Patients should be adequately hydrated and consideration should be given to monitoring of renal function after initiation of concomitant therapy, and periodically thereafter.
In a 28-day clinical study in patients with lisinopril-controlled Stage I and II hypertension, administration of celecoxib 200 mg BID resulted in no clinically significant increases, when compared to placebo treatment, in mean daily systolic or diastolic blood pressure as determined using 24-hour ambulatory blood pressure monitoring. Among patients treated with celecoxib 200 mg BID, 48 % were considered unresponsive to lisinopril at the final clinic visit (defined as either cuff diastolic blood pressure >90 mmHg or cuff diastolic blood pressure increased >10 % compared to baseline), compared to 27 % of patients treated with placebo; this difference was statistically significant.
Co-administration of NSAIDs and ciclosporin or tacrolimus may increase the nephrotoxic effect of ciclosporin or tacrolimus, respectively. Renal function should be monitored when celecoxib and any of these medicinal products are combined.
Celecoxib can be used with low-dose acetylsalicylic acid but is not a substitute for acetylsalicylic acid for CV prophylaxis. In the submitted studies, as with other NSAIDs, an increased risk of gastrointestinal ulceration or other gastrointestinal complications compared to use of celecoxib alone was shown for concomitant administration of low-dose acetylsalicylic acid (see section 5.1).
CYP2D6 inhibition:
Celecoxib is an inhibitor of CYP2D6. The plasma concentrations of medicinal products that are substrates of this enzyme may be increased when celecoxib is used concomitantly. Examples of medicinal products which are metabolised by CYP2D6 are antidepressants (tricyclics and SSRIs), neuroleptics, anti-arrhythmic medicinal products, etc. The dose of individually dose-titrated CYP2D6 substrates may need to be reduced when treatment with celecoxib is initiated or increased if treatment with celecoxib is terminated.
Concomitant administration of celecoxib 200 mg twice daily resulted in 2.6-fold and 1.5-fold increases in plasma concentrations of dextromethorphan and metoprolol (CYP2D6 substrates), respectively. These increases are due to celecoxib inhibition of the CYP2D6 substrate metabolism.
CYP2C19 inhibition:
In vitro studies have shown some potential for celecoxib to inhibit CYP2C19 catalysed metabolism. The clinical significance of this in vitro finding is unknown. Examples of medicinal products which are metabolised by CYP2C19 are diazepam, citalopram and imipramine.
Methotrexate:
In patients with rheumatoid arthritis celecoxib had no statistically significant effect on the pharmacokinetics (plasma or renal clearance) of methotrexate (in rheumatologic doses). However, adequate monitoring for methotrexate-related toxicity should be considered when combining these two medicinal products.
Lithium:
In healthy subjects, co-administration of celecoxib 200 mg twice daily with 450 mg twice daily of lithium resulted in a mean increase in Cmax of 16% and in AUC of 18% of lithium. Therefore, patients on lithium treatment should be closely monitored when celecoxib is introduced or withdrawn.
Oral contraceptives:
In an interaction study, celecoxib had no clinically relevant effects on the pharmacokinetics of oral contraceptives (1 mg norethisterone/35 micrograms ethinylestradiol).
Glibenclamide/tolbutamide:
Celecoxib does not affect the pharmacokinetics of tolbutamide (CYP2C9 substrate), or glibenclamide to a clinically relevant extent.
CYP2C9 poor metabolisers:
In individuals who are CYP2C9 poor metabolisers and demonstrate increased systemic exposure to celecoxib, concomitant treatment with CYP2C9 inhibitors such as fluconazole could result in further increases in celecoxib exposure. Such combinations should be avoided in known CYP2C9 poor metabolisers (see sections 4.2 and 5.2).
CYP2C9 inhibitors and inducers:
Since celecoxib is predominantly metabolised by CYP2C9 it should be used at half the recommended dose in patients receiving fluconazole. Concomitant use of 200 mg single dose of celecoxib and 200 mg once daily of fluconazole, a potent CYP2C9 inhibitor, resulted in a mean increase in celecoxib Cmax of 60% and in AUC of 130%. Concomitant use of inducers of CYP2C9 such as rifampicin, carbamazepine and barbiturates may reduce plasma concentrations of celecoxib.
Ketoconazole and antacids:
Ketoconazole or antacids have not been observed to affect the pharmacokinetics of celecoxib.
Interaction studies have only been performed in adults.
Studies in animals (rats and rabbits) have shown reproductive toxicity, including malformations (see sections 4.3 and 5.3). Inhibition of prostaglandin synthesis might adversely affect pregnancy. Data from epidemiological studies suggest an increased risk of spontaneous abortion after use of prostaglandin synthesis inhibitors in early pregnancy. The potential for human risk in pregnancy is unknown but cannot be excluded. Celecoxib, as with other medicinal products inhibiting prostaglandin synthesis, may cause uterine inertia and premature closure of the ductus arteriosus during the last trimester.
During the second or third trimester of pregnancy, NSAIDs including celecoxib may cause fetal renal dysfunction which may result in reduction of amniotic fluid volume or oligohydramnios in severe cases. Such effects may occur shortly after treatment initiation and are usually reversible.
Celecoxib is contraindicated in pregnancy and in women who can become pregnant (see sections 4.3 and 4.4). If a woman becomes pregnant during treatment, celecoxib should be discontinued.
Celecoxib is excreted in the milk of lactating rats at concentrations similar to those in plasma. Administration of celecoxib to a limited number of lactating women has shown a very low transfer of celecoxib into breast milk. Women who take Celebrex should not breastfeed.
Based on the mechanism of action, the use of NSAIDs, including celecoxib, may delay or prevent rupture of ovarian follicles, which has been associated with reversible infertility in some women.
Patients who experience dizziness, vertigo or somnolence while taking Celebrex should refrain from driving or operating machinery.
Adverse reactions are listed by system organ class and ranked by frequency in Table 1, reflecting data from the following sources:
Adverse reactions reported in osteoarthritis patients and rheumatoid arthritis patients at incidence rates greater than 0.01 % and greater than those reported for placebo during 12 placebo- and/or active-controlled clinical trials of duration up to 12 weeks at celecoxib daily doses from 100 mg up to 800 mg. In additional studies using non-selective NSAID comparators, approximately 7400 arthritis patients have been treated with celecoxib at daily doses up to 800 mg, including approximately 2300 patients treated for 1 year or longer. The adverse reactions observed with celecoxib in these additional studies were consistent with those for osteoarthritis and rheumatoid arthritis patients listed in Table 1.
Adverse reactions reported at incidence rates greater than placebo for subjects treated with celecoxib 400 mg daily in long-term polyp prevention trials of duration up to 3 years (the Adenoma Prevention with Celecoxib (APC) and Prevention of Colorectal Sporadic Adenomatous Polyps (PreSAP) trials; see section 5.1, Cardiovascular safety – long-term studies involving patients with sporadic adenomatous polyps).
Adverse drug reactions from post-marketing surveillance as spontaneously reported during a period in which an estimated >70 million patients were treated with celecoxib (various doses, durations, and indications). Even though these were identified as reactions from post-marketing reports, trial data was consulted to estimate frequency. Frequencies are based on a cumulative meta-analysis with pooling of trials representing exposure in 38102 patients.
Table 1. Adverse drug reactions in celecoxib clinical trials and surveillance experience (MedDRA preferred terms)1,2:
Very Common (≥1/10)
Common (≥1/100 to <1/10)
Uncommon (≥1/1,000 to <1/100)
Rare (≥1/10,000 to <1/1,000)
Very Rare (<1/10,000)
Frequency Not Known (cannot be estimated from available data)
Common: Sinusitis, upper respiratory tract infection, pharyngitis, urinary tract infection
Uncommon: Anaemia
Rare: Leukopenia, thrombo-cytopenia
Very Rare: Pancytopenia4
Common: Hyper-sensitivity
Very Rare: Anaphylactic shock4, anaphylactic reaction4
Uncommon: Hyperkalaemia
Common: Insomnia
Uncommon: Anxiety, depression, fatigue
Rare: Confusional state, hallucinations4
Common: Dizziness, hypertonia, headache4
Uncommon: Cerebral infarction1, paraesthesia, somnolence
Rare: Ataxia, dysgeusia
Very Rare: Haemorrhage intracranial (including fatal intracranial haemorrhage)4, meningitis aseptic4, epilepsy (including aggravated epilepsy)4, ageusia4, anosmia4
Uncommon: Vision blurred, conjunctivitis4
Rare: Eye haemorrhage4
Very Rare: Retinal artery occlusion4, retinal vein occlusion4
Uncommon: Tinnitus, hypoacusis1
Common: Myocardial infarction1
Uncommon: Cardiac failure, palpitations, tachycardia
Rare: Arrhythmia4
Very Common: Hyper-tension1 (including aggravated hyper-tension)
Rare: Pulmonary embolism4, flushing4
Very Rare: Vasculitis4
Common: Rhinitis, cough, dyspnoea1
Uncommon: Bronchospasm4
Rare: Pneumonitis4
Common: Nausea4, abdominal pain, diarrhoea, dyspepsia, flatulence, vomiting1, dysphagia1
Uncommon: Constipation, gastritis, stomatitis, gastrointestinal inflammation (including aggravation of gastrointestinal inflammation), eructation
Rare: Gastro-intestinal haemorrhage4, duodenal ulcer, gastric ulcer, oesophageal ulcer, intestinal ulcer, large intestinal ulcer, intestinal perforation, oesophagitis, melaena, pancreatitis, colitis4
Uncommon: Hepatic function abnormal, hepatic enzyme increased (including increased SGOT and SGPT)
Rare: Hepatitis4
Very Rare: Hepatic failure4 (sometimes fatal or requiring liver transplant), hepatitis fulminant4 (some with fatal outcome), hepatic necrosis4, cholestasis4, hepatitis cholestatic4, jaundice4
Common: Rash, pruritus (includes pruritus generalised)
Uncommon: Urticaria, ecchymosis4
Rare: Angioedema4, alopecia, photo-sensitivity
Very Rare: Dermatitis exfoliative4, erythema multiforme4, Stevens-Johnson syndrome4, toxic epidermal necrolysis4, drug reaction with eosinophilia and systemic symptoms (DRESS)4, acute generalised exanthematous pustulosis (AGEP)4, dermatitis bullous4
Common: Arthralgia4
Uncommon: Muscle spasms (leg cramps)
Very Rare: Myositis4
Uncommon: Blood creatinine increased, blood urea increased
Rare: Renal failure acute4, hypo-natraemia4
Very Rare: Tubulointerstitial nephritis4, nephrotic syndrome4, glomerulonephritis minimal lesion4
Rare: Menstrual disorder4
Frequency Not Known: Infertility female (female fertility decreased)3
Common: Influenza-like illness, oedema peripheral/fluid retention
Uncommon: Face oedema, chest pain4
Common: Injury (accidental injury)
1 Adverse drug reactions that occurred in polyp prevention trials, representing subjects treated with celecoxib 400 mg daily in 2 clinical trials of duration up to 3 years (the APC and PreSAP trials). The adverse drug reactions listed above for the polyp prevention trials are only those that have been previously recognised in the post-marketing surveillance experience or have occurred more frequently than in the arthritis trials.
2 Furthermore, the following previously unknown adverse reactions occurred in polyp prevention trials, representing subjects treated with celecoxib 400 mg daily in 2 clinical trials of duration up to 3 years (the APC and PreSAP trials):
Common: angina pectoris, irritable bowel syndrome, nephrolithiasis, blood creatinine increased, benign prostatic hyperplasia, weight increased. Uncommon: helicobacter infection, herpes zoster, erysipelas, bronchopneumonia, labyrinthitis, gingival infection, lipoma, vitreous floaters, conjunctival haemorrhage, deep vein thrombosis, dysphonia, haemorrhoidal haemorrhage, frequent bowel movements, mouth ulceration, allergic dermatitis, ganglion, nocturia, vaginal haemorrhage, breast tenderness, lower limb fracture, blood sodium increased.
3 Women intending to become pregnant are excluded from all trials, thus consultation of the trial database for the frequency of this event was not reasonable.
4 Frequencies are based on cumulative meta-analysis with pooling of trials representing exposure in 38102 patients.
In final data (adjudicated) from the APC and PreSAP trials in patients treated with celecoxib 400 mg daily for up to 3 years (pooled data from both trials; see section 5.1 for results from individual trials), the excess rate over placebo for myocardial infarction was 7.6 events per 1,000 patients (uncommon) and there was no excess rate for stroke (types not differentiated) over placebo.
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme at www.mhra.gov.uk/yellowcard or search for MHRA Yellow Card in the Google Play or Apple App Store.
Not applicable.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.