Source: Medicines & Healthcare Products Regulatory Agency (GB) Revision Year: 2022 Publisher: Pfizer Limited, Ramsgate Road, Sandwich, Kent, CT13 9NJ, United Kingdom
Hypersensitivity to the active substance or to any of the excipients.
Somatropin must not be used when there is any evidence of activity of a tumour. Intracranial tumours must be inactive and antitumour therapy must be completed prior to starting growth hormone therapy. Treatment should be discontinued if there is evidence of tumour growth.
GENOTROPIN should not be used for growth promotion in children with closed epiphyses.
Patients with acute critical illness suffering complications following open heart surgery, abdominal surgery, multiple accidental trauma, acute respiratory failure or similar conditions should not be treated with GENOTROPIN (regarding patients undergoing substitution therapy, see section 4.4).
Diagnosis and therapy with GENOTROPIN should be initiated and monitored by physicians who are appropriately qualified and experienced in the diagnosis and management of patients with the therapeutic indication of use.
Myositis is a very rare adverse event that may be related to the preservative metacresol. In the case of myalgia or disproportionate pain at injection site, myositis should be considered and if confirmed, a GENOTROPIN presentation without metacresol should be used.
The maximum recommended daily dose should not be exceeded (see section 4.2).
Somatropin may reduce insulin sensitivity. For patients with diabetes mellitus, the insulin dose may require adjustment after somatropin therapy is instituted. Patients with diabetes, glucose intolerance, or additional risk factors for diabetes should be monitored closely during somatropin therapy.
Growth hormone increases the extrathyroidal conversion of T4 to T3 which may result in a reduction in serum T4 and an increase in serum T3 concentrations. Whereas the peripheral thyroid hormone levels have remained within the reference ranges in the majority of healthy subjects, hypothyroidism theoretically may develop in subjects with subclinical hypothyroidism. Consequently, monitoring of thyroid function should therefore be conducted in all patients. In patients with hypopituitarism on standard replacement therapy, the potential effect of growth hormone treatment on thyroid function must be closely monitored.
Introduction of somatropin treatment may result in inhibition of 11βHSD-1 and reduced serum cortisol concentrations. In patients treated with somatropin, previously undiagnosed central (secondary) hypoadrenalism may be unmasked and glucocorticoid replacement may be required. In addition, patients treated with glucocorticoid replacement therapy for previously diagnosed hypoadrenalism may require an increase in their maintenance or stress doses, following initiation of somatropin treatment (see section 4.5).
If a woman taking somatropin begins oral oestrogen therapy, the dose of somatropin may need to be increased to maintain the serum IGF-1 levels within the normal age-appropriate range. Conversely, if a woman on somatropin discontinues oral oestrogen therapy, the dose of somatropin may need to be reduced to avoid excess of growth hormone and/or side effects (see section 4.5).
In growth hormone deficiency secondary to treatment of malignant disease, it is recommended to pay attention to signs of relapse of the malignancy. In childhood cancer survivors, an increased risk of a second neoplasm has been reported in patients treated with somatropin after their first neoplasm. Intracranial tumours, in particular meningiomas, in patients treated with radiation to the head for their first neoplasm, were the most common of these second neoplasms.
In patients with endocrine disorders, including growth hormone deficiency, slipped epiphyses of the hip may occur more frequently than in the general population. Children limping during treatment with somatropin, should be examined clinically.
In case of severe or recurrent headache, visual problems, nausea and/or vomiting, a funduscopy for papilloedema is recommended. If papilloedema is confirmed, a diagnosis of benign intracranial hypertension should be considered and, if appropriate, the growth hormone treatment should be discontinued. At present there is insufficient evidence to give specific advice on the continuation of growth hormone treatment in patients with resolved intracranial hypertension. If growth hormone treatment is restarted, careful monitoring for symptoms of intracranial hypertension is necessary.
Leukaemia has been reported in a small number of growth hormone deficiency patients, some of whom have been treated with somatropin. However, there is no evidence that leukaemia incidence is increased in growth hormone recipients without predisposition factors.
As with all somatropin containing products, a small percentage of patients may develop antibodies to GENOTROPIN. GENOTROPIN has given rise to the formation of antibodies in approximately 1% of patients. The binding capacity of these antibodies is low and there is no effect on growth rate. Testing for antibodies to somatropin should be carried out in any patient with otherwise unexplained lack of response.
Experience in patients above 80 years is limited. Elderly patients may be more sensitive to the action of GENOTROPIN, and therefore may be more prone to develop adverse reactions.
The effects of GENOTROPIN on recovery were studied in two placebo controlled trials involving 522 critically ill adult patients suffering complications following open heart surgery, abdominal surgery, multiple accidental trauma or acute respiratory failure. Mortality was higher in patients treated with 5.3 or 8 mg GENOTROPIN daily compared to patients receiving placebo, 42% vs. 19%. Based on this information, these types of patients should not be treated with GENOTROPIN. As there is no information available on the safety of growth hormone substitution therapy in acutely critically ill patients, the benefits of continued treatment in this situation should be weighed against the potential risks involved.
In all patients developing other or similar acute critical illness, the possible benefit of treatment with Genotropin must be weighed against the potential risk involved.
Although rare, pancreatitis should be considered in somatropin-treated patients, especially children who develop abdominal pain.
In patients with Prader-Willi syndrome, treatment should always be in combination with a calorie-restricted diet.
There have been reports of fatalities associated with the use of growth hormone in pediatric patients with Prader-Willi syndrome who had one or more of the following risk factors: severe obesity (those patients exceeding a weight/height of 200 %), history of respiratory impairment or sleep apnoea, or unidentified respiratory infection. Patients with one or more of these factors may be at increased risk.
Before initiation of treatment with somatropin in patients with Prader-Willi syndrome, signs for upper airway obstruction, sleep apnoea, or respiratory infections should be assessed.
If during the evaluation of upper airway obstruction, pathological findings are observed, the child should be referred to an Ear, nose and throat (ENT) specialist for treatment and resolution of the respiratory disorder prior to initiating growth hormone treatment.
Sleep apnoea should be assessed before onset of growth hormone treatment by recognised methods such as polysomnography or overnight oxymetry, and monitored if sleep apnoea is suspected.
If during treatment with somatropin patients show signs of upper airway obstruction (including onset of or increased snoring), treatment should be interrupted, and a new ENT assessment performed.
All patients with Prader-Willi syndrome should be monitored if sleep apnoea is suspected.
Patients should be monitored for signs of respiratory infections, which should be diagnosed as early as possible and treated aggressively.
All patients with Prader-Willi syndrome should also have effective weight control before and during growth hormone treatment.
Scoliosis is common in patients with Prader-Willi syndrome. Scoliosis may progress in any child during rapid growth. Signs of scoliosis should be monitored during treatment.
Experience with prolonged treatment in adults and in patients with Prader-Willi syndrome is limited.
In short children born SGA other medical reasons or treatments that could explain growth disturbance should be ruled out before starting treatment.
In SGA children it is recommended to measure fasting insulin and blood glucose before start of treatment and annually thereafter. In patients with increased risk for diabetes mellitus (e.g. familial history of diabetes, obesity, severe insulin resistance, acanthosis nigricans) oral glucose tolerance testing (OGTT) should be performed. If overt diabetes occurs, growth hormone should not be administered.
In SGA children it is recommended to measure the IGF-I level before start of treatment and twice a year thereafter. If on repeated measurements IGF-I levels exceed +2 SD compared to references for age and pubertal status, the IGF-I/IGFBP-3 ratio could be taken into account to consider dose adjustment.
Experience in initiating treatment in SGA patients near onset of puberty is limited. It is therefore not recommended to initiate treatment near onset of puberty. Experience in patients with Silver-Russell syndrome is limited.
Some of the height gain obtained with treating short children born SGA with growth hormone may be lost if treatment is stopped before final height is reached.
In chronic renal insufficiency, renal function should be below 50 percent of normal before institution of therapy. To verify growth disturbance, growth should be followed for a year preceding institution of therapy. During this period, conservative treatment for renal insufficiency (which includes control of acidosis, hyperparathyroidism and nutritional status) should have been established and should be maintained during treatment. The treatment should be discontinued at renal transplantation.
To date, no data on final height in patients with chronic renal insufficiency treated with Genotropin are available.
Concomitant treatment with glucocorticoids inhibits the growth-promoting effects of somatropin containing products. Patients with Adrenocorticotropic hormone (ACTH) deficiency should have their glucocorticoid replacement therapy carefully adjusted to avoid any inhibitory effect on growth. Therefore, patients treated with glucocorticoids should have their growth monitored carefully to assess the potential impact of glucocorticoid treatment on growth.
Growth hormone decreases the conversion of cortisone to cortisol and may unmask previously undiscovered central hypoadrenalism or render low glucocorticoid replacement doses ineffective (see section 4.4).
Data from an interaction study performed in growth hormone deficient adults, suggests that somatropin administration may increase the clearance of compounds known to be metabolised by cytochrome P450 isoenzymes. The clearance of compounds metabolised by cytochrome P 450 3A4 (e.g. sex steroids, corticosteroids, anticonvulsants and ciclosporin) may be especially increased resulting in lower plasma levels of these compounds. The clinical significance of this is unknown.
Also see section 4.4 for statements regarding diabetes mellitus and thyroid disorder.
In women on oral oestrogen replacement, a higher dose of growth hormone may be required to achieve the treatment goal (see section 4.4).
Animal studies are insufficient with regard to effects on pregnancy, embryofoetal development, parturition or postnatal development (See section 5.3). No clinical studies on exposed pregnancies are available. Therefore, somatropin containing products are not recommended during pregnancy and in women of childbearing potential not using contraception.
There have been no clinical studies conducted with somatropin containing products in breast-feeding women. It is not known whether somatropin is excreted in human milk, but absorption of intact protein from the gastrointestinal tract of the infant is extremely unlikely. Therefore caution should be exercised when somatropin containing products are administered to breast-feeding women.
GENOTROPIN has no influence on the ability to drive and use machines.
Patients with growth hormone deficiency are characterized by extracellular volume deficit. When treatment with somatropin is started this deficit is rapidly corrected. In adult patients adverse effects related to fluid retention, such as oedema peripheral, face oedema, musculoskeletal stiffness, arthralgia, myalgia and paraesthesia are common. In general these adverse effects are mild to moderate, arise within the first months of treatment and subside spontaneously or with dose-reduction.
The incidence of these adverse effects is related to the administered dose, the age of patients, and possibly inversely related to the age of patients at the onset of growth hormone deficiency. In children such adverse effects are uncommon.
Genotropin has given rise to the formation of antibodies in approximately 1% of the patients. The binding capacity of these antibodies has been low and no clinical changes have been associated with their formation, see section 4.4.
Table 1 shows the adverse reactions ranked under headings of System Organ Class and frequency for children and adults, using the following convention: very common (≥1/10); common (≥1/100 to <1/10); uncommon (≥1/1,000 to <1/100); rare (≥1/10,000 to <1/1,000); very rare (<1/10,000); not known (cannot be estimated from the available data).
Table 1. Tabulated list of adverse reactions:
System organ class | Very common (≥1/10) | Common (≥1/100 to <1/10) | Uncommon (≥1/1,000 to <1/100) | Rare (≥1/10,000 to <1/1000) | Very rare (<1/10,000) | Not known (cannot be estimated from available data) |
---|---|---|---|---|---|---|
Neoplasms benign, malignant, and unspecified (including cysts and polyps) | Leukaemia† | |||||
Metabolism and nutrition disorders | Type 2 diabetes mellitus | |||||
Nervous system disorders | Paraesthesia* (Adults) Carpal tunnel syndrome | (Children) Benign intracranial hypertension (Children) Paraesthesia* | (Adults) Benign intracranial hypertension | |||
Skin and subcutaneous tissue disorders | (Children) Rash**, Pruritus**, Urticaria** | (Adults) Rash**, Pruritis**, Urticaria** | ||||
Musculoskeletal and connective tissue disorders | (Adults) Arthralgia* | (Adults) Myalgia* (Adults) Musculoskeletal stiffness* (Children) Arthralgia* | (Children) Myalgia* | Musculoskeletal stiffness* | ||
Reproductive system and breast disorders | (Adults and Children) Gynaecomastia | |||||
General disorders and administration site conditions | (Adults) Oedema peripheral* | (Children) Injection-site reaction$ | (Children) Oedema peripheral* | (Adults and Children) Face oedema* (Adults) Injection-site reaction$ | ||
Investigations | (Adults and Children) Blood cortisol decreased‡ |
* In general, these adverse effects are mild to moderate, arise within the first months of treatment, and subside spontaneously or with dose-reduction. The incidence of these adverse effects is related to the administered dose, the age of the patients, and possibly inversely related to the age of the patients at the onset of growth hormone deficiency.
** Adverse Drug Reactions (ADR) identified post-marketing.
$ Transient injection site reactions in children have been reported.
‡ Clinical significance is unknown
† Reported in growth hormone deficient children treated with somatropin, but the incidence appears to be similar to that in children without growth hormone deficiency.
Somatropin has been reported to reduce serum cortisol levels, possibly by affecting carrier proteins or by increased hepatic clearance. The clinical relevance of these findings may be limited. Nevertheless, corticosteroid replacement therapy should be optimised before initiation of GENOTROPIN therapy.
In the post-marketing experience rare cases of sudden death have been reported in patients affected by Prader-Willi syndrome treated with somatropin, although no causal relationship has been demonstrated.
Cases of leukaemia have been reported in children with a GH deficiency, some of whom were treated with somatropin and included in the post-marketing experience. However, there is no evidence of an increased risk of leukaemia without predisposition factors, such as radiation to the brain or head.
Slipped capital femoral epiphysis and Legg-Calve-Perthes disease have been reported in children treated with GH. Slipped capital femoral epiphysis occurs more frequently in case of endocrine disorders and Legg-Calve-Perthes is more frequent in case of short stature. But, it is unknown if these 2 pathologies are more frequent or not while treated with somatropin. Their diagnosis should be considered in a child with a discomfort or pain in the hip or knee.
Other adverse drug reactions may be considered somatropin class effects, such as possible hyperglycaemia caused by decreased insulin sensitivity, decreased free thyroxin level and benign intra-cranial hypertension.
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme at www.mhra.gov.uk/yellowcard or search for MHRA Yellow Card in the Google Play or Apple App Store.
ADR Reporting, Website: www.medicinesauthority.gov.mt/adrportal.
In the absence of compatibility studies, this medicinal product must not be mixed with other medicinal products.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.