Source: Medicines & Healthcare Products Regulatory Agency (GB) Revision Year: 2021 Publisher: Aspen Pharma Trading Limited, 3016 Lake Drive, Citywest Business Campus, Dublin 24, Ireland
Pharmacotherapeutic group: Antineoplastic and Immunomodulating agents
ATC code: L04AX01
Azathioprine is an imidazole derivative of 6-mercaptopurine (6-MP). It is rapidly broken down in vivo into 6-MP and a methylnitroimidazole moiety. The 6-MP readily crosses cell membranes and is converted intracellularly into a number of purine thioanalogues, which include the main active nucleotide, thioinosinic acid. The rate of conversion varies from one person to another. Nucleotides do not traverse cell membranes and therefore do not circulate in body fluids. Irrespective of whether it is given directly or is derived in vivo from azathioprine, 6-MP is eliminated mainly as the inactive oxidised metabolite thiouric acid. This oxidation is brought about by xanthine oxidase, an enzyme that is inhibited by allopurinol. The activity of the methylnitroimidazole moiety has not been defined clearly. However, in several systems it appears to modify the activity of azathioprine as compared with that of 6-MP. Determination of plasma concentrations of azathioprine or 6-MP have no prognostic value as regards effectiveness or toxicity of these compounds.
While the precise modes of action remain to be elucidated, some suggested mechanisms include:
Because of these mechanisms, the therapeutic effect of Imuran may be evident only after several weeks or months of treatment.
Imuran appears to be well absorbed from the upper gastro-intestinal tract.
Studies in mice with [35S]-azathioprine showed no unusually large concentration in any particular tissue, and there was very little [35S]-label found in brain.
Plasma levels of azathioprine and 6-mercaptopurine do not correlate well with the therapeutic efficacy or toxicity of Imuran.
Azathioprine is well absorbed following oral administration. Although there are no food effect studies with azathioprine, pharmacokinetic studies with 6-mercaptopurine have been conducted that are relevant to azathioprine. The mean relative bioavailability of 6-mercaptopurine was approximately 27% lower following administration with food and milk compared to an overnight fast. 6-mercaptopurine is not stable in milk due to the presence of xanthine oxidase (30% degradation within 30 minutes) (see Section 4.2). Azathioprine may be taken with food or on an empty stomach, but patients should standardise the method of administration. The dose should not be taken with milk or dairy products (see Section 4.2).
After oral administration of [35S]-azathioprine, the maximum plasma radioactivity occurs at 1-2 hours and decays with a half-life of 4-6 hours. This is not an estimate of the half-life of azathioprine itself, but reflects the elimination from plasma of azathioprine and the [35S]-containing metabolites of the drug. As a consequence of the rapid and extensive metabolism of azathioprine, only a fraction of the radioactivity measured in plasma is comprised of unmetabolised drug. Studies in which the plasma concentration of azathioprine and 6-mercaptopurine have been determined following intravenous administration of azathioprine have estimated the mean plasma T1/2 for azathioprine to be in the range of 6-28 minutes and the mean plasma T1/2 for 6-mercaptopurine to be in the range 38-114 minutes after i.v. administration of the drug.
Azathioprine is principally excreted as 6-thiouric uric acid in the urine. 1-methyl-4-nitro-5-thioimidazole has also been detected in urine as a minor excretory product. This would indicate that, rather than azathioprine being exclusive cleaved by nucleophilic attack at the 5-position of the nitroimidazole ring to generate 6-mercaptopurine and 1-methyl-4-nitro-5-(S-glutathionyl)imidazole. A small proportion of the drug may be cleaved between the S atom and the purine ring. Only a small amount of the dose of azathioprine administered is excreted unmetabolised in the urine.
TPMT activity is inversely related to red blood cell 6-mercaptopurine derived thioguanine nucleotide concentration, with higher thioguanine nucleotide concentrations resulting in greater reductions in white blood cell and neutrophil counts. Individuals with TPMT deficiency develop very high cytotoxic thioguanine nucleotide concentrations.
Genotypic testing can determine the allelic pattern of a patient. Currently, 3 alleles – TPMT*2, TPMT*3A and TPMT*3C – account for about 95% of individuals with reduced levels of TPMT activity. Approximately 0.3% (1:300) of patients have two non-functional alleles (homozygous-deficient) of the TPMT gene and have little or no detectable enzyme activity. Approximately 10% of patients have one TPMT non-functional allele (heterozygous) leading to low or intermediate TPMT activity and 90% of individuals have normal TPMT activity with two functional alleles. There may also be a group of approximately 2% who have very high TPMT activity. Phenotypic testing determines the level of thiopurine nucleotides or TPMT activity in red blood cells and can also be informative (see section 4.4).
In a US clinical study, 18 children (aged 3 to 14 years) were evenly divided into two groups; either a weight to height ratio above or below the 75th percentile. Each child was on maintenance treatment of 6-mercaptopurine and the dosage was calculated based on their body surface area. The mean AUC of 6-mercaptopurine in the group above the 75th percentile was 2.4 times lower than that for the group below the 75th percentile. Therefore, children considered to be overweight may require azathioprine doses at the higher end of the dose range and close monitoring of response to treatment is recommended (see section 4.2).
Studies with azathioprine have shown no difference in 6-mercaptopurine pharmacokinetics in uremic patients compared to renal transplant patients. Since little is known about the active metabolites of azathioprine in renal impairment, consideration should be given to reducing the dosage in patients with impaired renal function (see section 4.2).
Azathioprine and/or its metabolites are eliminated by haemodialysis, with approximately 45% of radioactive metabolites eliminated during dialysis of 8 hours.
A study with azathioprine was performed in three groups of renal transplant patients: those without liver disease, those with hepatic impairment (but no cirrhosis) and those with hepatic impairment and cirrhosis. The study demonstrated that 6-mercaptopurine exposure was 1.6 times higher in patients with hepatic impairment (but no cirrhosis) and 6 times higher in patients with hepatic impairment and cirrhosis, compared to patients without liver disease. Therefore, consideration should be given to reducing the dosage in patients with impaired hepatic function (see section 4.2).
Studies in pregnant rats, mice and rabbits using azathioprine in dosages from 5 to 15 mg/kg body weight/day over the period of organogenesis have shown varying degrees of foetal abnormalities. Teratogenicity was evident in rabbits at 10 mg/kg body weight/day.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.