LIPITOR Film-coated tablet Ref.[51699] Active ingredients: Atorvastatin

Source: FDA, National Drug Code (US)  Revision Year: 2022 

4. Contraindications

  • Acute liver failure or decompensated cirrhosis [see Warnings and Precautions (5.3)]
  • Hypersensitivity to atorvastatin or any excipients in LIPITOR. Hypersensitivity reactions, including anaphylaxis, angioneurotic edema, erythema multiforme, Stevens-Johnson syndrome, and toxic epidermal necrolysis, have been reported [see Adverse Reactions (6.2)].

5. Warnings and Precautions

5.1 Myopathy and Rhabdomyolysis

LIPITOR may cause myopathy (muscle pain, tenderness, or weakness associated with elevated creatine kinase [CK]) and rhabdomyolysis. Acute kidney injury secondary to myoglobinuria and rare fatalities have occurred as a result of rhabdomyolysis in patients treated with statins, including LIPITOR.

Risk Factors for Myopathy

Risk factors for myopathy include age 65 years or greater, uncontrolled hypothyroidism, renal impairment, concomitant use with certain other drugs (including other lipid-lowering therapies), and higher LIPITOR dosage [see Drug Interactions (7.1) and Use in Specific Populations (8.5, 8.6)].

Steps to Prevent or Reduce the Risk of Myopathy and Rhabdomyolysis

LIPITOR exposure may be increased by drug interactions due to inhibition of cytochrome P450 enzyme 3A4 (CYP3A4) and/or transporters (e.g., breast cancer resistant protein [BCRP], organic anion-transporting polypeptide [OATP1B1/OATP1B3] and P-glycoprotein [P-gp]), resulting in an increased risk of myopathy and rhabdomyolysis. Concomitant use of cyclosporine, gemfibrozil, tipranavir plus ritonavir, or glecaprevir plus pibrentasvir with LIPITOR is not recommended. LIPITOR dosage modifications are recommended for patients taking certain anti-viral, azole antifungals, or macrolide antibiotic medications [see Dosage and Administration (2.5)]. Cases of myopathy/rhabdomyolysis have been reported with atorvastatin co-administered with lipid modifying doses (>1 gram/day) of niacin, fibrates, colchicine, and ledipasvir plus sofosbuvir. Consider if the benefit of use of these products outweighs the increased risk of myopathy and rhabdomyolysis [see Drug Interactions (7.1)].

Concomitant intake of large quantities, more than 1.2 liters daily, of grapefruit juice is not recommended in patients taking LIPITOR [see Drug Interactions (7.1)].

Discontinue LIPITOR if markedly elevated CK levels occur or if myopathy is either diagnosed or suspected. Muscle symptoms and CK elevations may resolve if LIPITOR is discontinued. Temporarily discontinue LIPITOR in patients experiencing an acute or serious condition at high risk of developing renal failure secondary to rhabdomyolysis (e.g., sepsis; shock; severe hypovolemia; major surgery; trauma; severe metabolic, endocrine, or electrolyte disorders; or uncontrolled epilepsy).

Inform patients of the risk of myopathy and rhabdomyolysis when starting or increasing the LIPITOR dosage. Instruct patients to promptly report any unexplained muscle pain, tenderness or weakness, particularly if accompanied by malaise or fever.

5.2 Immune-Mediated Necrotizing Myopathy

There have been rare reports of immune-mediated necrotizing myopathy (IMNM), an autoimmune myopathy, associated with statin use, including reports of recurrence when the same or a different statin was administered. IMNM is characterized by proximal muscle weakness and elevated serum creatine kinase that persists despite discontinuation of statin treatment; positive anti-HMG CoA reductase antibody; muscle biopsy showing necrotizing myopathy; and improvement with immunosuppressive agents. Additional neuromuscular and serologic testing may be necessary. Treatment with immunosuppressive agents may be required. Discontinue LIPITOR if IMNM is suspected.

5.3 Hepatic Dysfunction

Increases in serum transaminases have been reported with use of LIPITOR [see Adverse Reactions (6.1)]. In most cases, these changes appeared soon after initiation, were transient, were not accompanied by symptoms, and resolved or improved on continued therapy or after a brief interruption in therapy. Persistent increases to more than three times the ULN in serum transaminases have occurred in approximately 0.7% of patients receiving LIPITOR in clinical trials. There have been rare postmarketing reports of fatal and non-fatal hepatic failure in patients taking statins, including LIPITOR.

Patients who consume substantial quantities of alcohol and/or have a history of liver disease may be at increased risk for hepatic injury [see Use in Specific Populations (8.7)].

Consider liver enzyme testing before LIPITOR initiation and when clinically indicated thereafter. LIPITOR is contraindicated in patients with acute liver failure or decompensated cirrhosis [see Contraindications (4)]. If serious hepatic injury with clinical symptoms and/or hyperbilirubinemia or jaundice occurs, promptly discontinue LIPITOR.

5.4 Increases in HbA1c and Fasting Serum Glucose Levels

Increases in HbA1c and fasting serum glucose levels have been reported with statins, including LIPITOR. Optimize lifestyle measures, including regular exercise, maintaining a healthy body weight, and making healthy food choices.

5.5 Increased Risk of Hemorrhagic Stroke in Patients on LIPITOR 80 mg with Recent Hemorrhagic Stroke

In a post-hoc analysis of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial where 2365 adult patients, without CHD who had a stroke or TIA within the preceding 6 months, were treated with LIPITOR 80 mg, a higher incidence of hemorrhagic stroke was seen in the LIPITOR 80 mg group compared to placebo (55, 2.3% LIPITOR vs. 33, 1.4% placebo; HR: 1.68, 95% CI: 1.09, 2.59; p=0.0168). The incidence of fatal hemorrhagic stroke was similar across treatment groups (17 vs. 18 for the atorvastatin and placebo groups, respectively). The incidence of non-fatal hemorrhagic stroke was significantly higher in the LIPITOR group (38, 1.6%) as compared to the placebo group (16, 0.7%). Some baseline characteristics, including hemorrhagic and lacunar stroke on study entry, were associated with a higher incidence of hemorrhagic stroke in the LIPITOR group [see Adverse Reactions (6.1)]. Consider the risk/benefit of use of LIPITOR 80 mg in patients with recent hemorrhagic stroke.

6. Adverse Reactions

The following important adverse reactions are described below and elsewhere in the labeling:

  • Myopathy and Rhabdomyolysis [see Warnings and Precautions (5.1)]
  • Immune-Mediated Necrotizing Myopathy [see Warnings and Precautions (5.2)]
  • Hepatic Dysfunction [see Warnings and Precautions (5.3)]
  • Increases in HbA1c and Fasting Serum Glucose Levels [see Warnings and Precautions (5.4)]

6.1. Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, the adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

In the LIPITOR placebo-controlled clinical trial database of 16,066 patients (8755 LIPITOR vs. 7311 placebo; age range 10-93 years, 39% women, 91% White, 3% Black, 2% Asian, 4% other) with a median treatment duration of 53 weeks, the most common adverse reactions in patients treated with LIPITOR that led to treatment discontinuation and occurred at a rate greater than placebo were: myalgia (0.7%), diarrhea (0.5%), nausea (0.4%), alanine aminotransferase increase (0.4%), and hepatic enzyme increase (0.4%).

Table 1 summarizes adverse reactions reported in ≥2% and at a rate greater than placebo in patients treated with LIPITOR (n=8755), from seventeen placebo-controlled trials.

Table 1. Adverse Reactions Occurring in ≥2% in Patients LIPITOR-Treated with any Dose and Greater than Placebo:

Adverse Reaction% Placebo
N=7311
% 10 mg
N=3908
% 20 mg
N=188
% 40 mg
N=604
% 80 mg
N=4055
% Any dose
N=8755
Nasopharyngitis 8.2 12.9 5.3 7.0 4.2 8.3
Arthralgia 6.5 8.9 11.7 10.6 4.3 6.9
Diarrhea 6.3 7.3 6.4 14.1 5.2 6.8
Pain in extremity 5.9 8.5 3.7 9.3 3.1 6.0
Urinary tract infection 5.6 6.9 6.4 8.0 4.1 5.7
Dyspepsia 4.3 5.9 3.2 6.0 3.3 4.7
Nausea 3.5 3.7 3.7 7.1 3.8 4.0
Musculoskeletal pain 3.6 5.2 3.2 5.1 2.3 3.8
Muscle spasms 3.0 4.6 4.8 5.1 2.4 3.6
Myalgia 3.1 3.6 5.9 8.4 2.7 3.5
Insomnia 2.9 2.8 1.1 5.3 2.8 3.0
Pharyngolaryngeal pain 2.1 3.9 1.6 2.8 0.7 2.3

Other adverse reactions reported in placebo-controlled trials include:

Body as a whole: malaise, pyrexia

Digestive system: abdominal discomfort, eructation, flatulence, hepatitis, cholestasis

Musculoskeletal system: musculoskeletal pain, muscle fatigue, neck pain, joint swelling

Metabolic and nutritional system: transaminases increase, liver function test abnormal, blood alkaline phosphatase increase, creatine phosphokinase increase, hyperglycemia

Nervous system: nightmare

Respiratory system: epistaxis

Skin and appendages: urticaria

Special senses: vision blurred, tinnitus

Urogenital system: white blood cells urine positive

Elevations in Liver Enzyme Tests:

Persistent elevations in serum transaminases, defined as more than 3 times the ULN and occurring on 2 or more occasions, occurred in 0.7% of patients who received LIPITOR in clinical trials. The incidence of these abnormalities was 0.2%, 0.2%, 0.6%, and 2.3% for 10, 20, 40, and 80 mg, respectively.

One patient in clinical trials developed jaundice. Increases in liver enzyme tests in other patients were not associated with jaundice or other clinical signs or symptoms. Upon dose reduction, drug interruption, or discontinuation, transaminase levels returned to or near pretreatment levels without sequelae. Eighteen of 30 patients with persistent liver enzyme elevations continued treatment with a reduced dose of LIPITOR.

Treating to New Targets Study (TNT):

In TNT, [see Clinical Studies (14.1)] 10,001 patients (age range 29-78 years, 19% women; 94% White, 3% Black, 1% Asian, 2% other) with clinically evident CHD were treated with LIPITOR 10 mg daily (n=5006) or LIPITOR 80 mg daily (n=4995). In the high-dose LIPITOR group, there were more patients with serious adverse reactions (1.8%) and discontinuations due to adverse reactions (9.9%) as compared to the low-dose group (1.4%; 8.1%, respectively) during a median follow-up of 4.9 years. Persistent transaminase elevations (≥3 x ULN twice within 4-10 days) occurred in 1.3% of individuals with LIPITOR 80 mg and in 0.2% of individuals with LIPITOR 10 mg. Elevations of CK (≥10 x ULN) were higher in the high-dose LIPITOR group (0.3%) compared to the low-dose LIPITOR group (0.1%).

Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL):

In SPARCL, 4731 patients (age range 21-92 years, 40% women; 93% White, 3% Black, 1% Asian, 3% other) without clinically evident CHD but with a stroke or transient ischemic attack (TIA) within the previous 6 months were treated with LIPITOR 80 mg (n=2365) or placebo (n=2366) for a median follow-up of 4.9 years. There was a higher incidence of persistent hepatic transaminase elevations (≥3 x ULN twice within 4-10 days) in the LIPITOR group (0.9%) compared to placebo (0.1%). Elevations of CK (>10 x ULN) were rare, but were higher in the LIPITOR group (0.1%) compared to placebo (0.0%). Diabetes was reported as an adverse reaction in 6.1% of subjects in the LIPITOR group and 3.8% of subjects in the placebo group.

In a post-hoc analysis, LIPITOR 80 mg reduced the incidence of ischemic stroke (9.2% vs. 11.6%) and increased the incidence of hemorrhagic stroke (2.3% vs. 1.4%) compared to placebo. The incidence of fatal hemorrhagic stroke was similar between groups (17 LIPITOR vs. 18 placebo). The incidence of non-fatal hemorrhagic strokes was significantly greater in the LIPITOR group (38 non-fatal hemorrhagic strokes) as compared to the placebo group (16 non-fatal hemorrhagic strokes). Patients who entered the trial with a hemorrhagic stroke appeared to be at increased risk for hemorrhagic stroke (16% LIPITOR vs. 4% placebo).

Adverse Reactions from Clinical Studies of LIPITOR in Pediatric Patients with HeFH

In a 26-week controlled study in pediatric patients with HeFH (ages 10 years to 17 years) (n=140, 31% female; 92% White, 1.6% Blacks, 1.6% Asians, 4.8% other), the safety and tolerability profile of LIPITOR 10 to 20 mg daily, as an adjunct to diet to reduce total cholesterol, LDL-C, and apo B levels, was generally similar to that of placebo [see Use in Specific Populations (8.4) and Clinical Studies (14.6)].

6.2. Postmarketing Experience

The following adverse reactions have been identified during post-approval use of LIPITOR. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Gastrointestinal disorders: pancreatitis

General disorders: fatigue

Hepatobiliary disorders: fatal and non-fatal hepatic failure

Immune system disorders: anaphylaxis

Injury: tendon rupture

Musculoskeletal and connective tissue disorders: rhabdomyolysis, myositis.

There have been rare reports of immune-mediated necrotizing myopathy associated with statin use.

Nervous system disorders: dizziness, peripheral neuropathy.

There have been rare reports of cognitive impairment (e.g., memory loss, forgetfulness, amnesia, memory impairment, confusion) associated with the use of all statins. Cognitive impairment was generally nonserious, and reversible upon statin discontinuation, with variable times to symptom onset (1 day to years) and symptom resolution (median of 3 weeks).

Psychiatric disorders: depression

Respiratory disorders: interstitial lung disease

Skin and subcutaneous tissue disorders: angioneurotic edema, bullous rashes (including erythema multiforme, Stevens-Johnson syndrome, and toxic epidermal necrolysis)

7. Drug Interactions

7.1 Drug Interactions that may Increase the Risk of Myopathy and Rhabdomyolysis with LIPITOR

LIPITOR is a substrate of CYP3A4 and transporters (e.g., OATP1B1/1B3, P-gp, or BCRP). LIPITOR plasma levels can be significantly increased with concomitant administration of inhibitors of CYP3A4 and transporters. Table 2 includes a list of drugs that may increase exposure to LIPITOR and may increase the risk of myopathy and rhabdomyolysis when used concomitantly and instructions for preventing or managing them [see Warnings and Precautions (5.1) and Clinical Pharmacology (12.3)].

Table 2. Drug Interactions that may Increase the Risk of Myopathy and Rhabdomyolysis with LIPITOR:

Cyclosporine or Gemfibrozil
Clinical Impact: Atorvastatin plasma levels were significantly increased with concomitant administration of LIPITOR and cyclosporine, an inhibitor of CYP3A4 and OATP1B1 [see Clinical Pharmacology (12.3)]. Gemfibrozil may cause myopathy when given alone. The risk of myopathy and rhabdomyolysis is increased with concomitant use of cyclosporine or gemfibrozil with LIPITOR.
Intervention: Concomitant use of cyclosporine or gemfibrozil with LIPITOR is not recommended.
Anti-Viral Medications
Clinical Impact: Atorvastatin plasma levels were significantly increased with concomitant administration of LIPITOR with many anti-viral medications, which are inhibitors of CYP3A4 and/or transporters (e.g., BCRP, OATP1B1/1B3, P-gp, MRP2, and/or OAT2) [see Clinical Pharmacology (12.3)]. Cases of myopathy and rhabdomyolysis have been reported with concomitant use of ledipasvir plus sofosbuvir with LIPITOR.
Intervention: • Concomitant use of tipranavir plus ritonavir or glecaprevir plus pibrentasvir with LIPITOR is not recommended.
• In patients taking lopinavir plus ritonavir, or simeprevir, consider the risk/benefit of concomitant use with atorvastatin.
• In patients taking saquinavir plus ritonavir, darunavir plus ritonavir, fosamprenavir, fosamprenavir plus ritonavir, elbasvir plus grazoprevir or letermovir, do not exceed LIPITOR 20 mg.
• In patients taking nelfinavir, do not exceed LIPITOR 40 mg [see Dosage and Administration (2.5)].
• Consider the risk/benefit of concomitant use of ledipasvir plus sofosbuvir with LIPITOR.
• Monitor all patients for signs and symptoms of myopathy particularly during initiation of therapy and during upward dose titration of either drug.
Examples: Tipranavir plus ritonavir, glecaprevir plus pibrentasvir, lopinavir plus ritonavir, simeprevir, saquinavir plus ritonavir, darunavir plus ritonavir, fosamprenavir, fosamprenavir plus ritonavir, elbasvir plus grazoprevir, letermovir, nelfinavir, and ledipasvir plus sofosbuvir.
Select Azole Antifungals or Macrolide Antibiotics
Clinical Impact: Atorvastatin plasma levels were significantly increased with concomitant administration of LIPITOR with select azole antifungals or macrolide antibiotics, due to inhibition of CYP3A4 and/or transporters [see Clinical Pharmacology (12.3)].
Intervention: In patients taking clarithromycin or itraconazole, do not exceed LIPITOR 20 mg [see Dosage and Administration (2.5)]. Consider the risk/benefit of concomitant use of other azole antifungals or macrolide antibiotics with LIPITOR. Monitor all patients for signs and symptoms of myopathy particularly during initiation of therapy and during upward dose titration of either drug.
Examples: Erythromycin, clarithromycin, itraconazole, ketoconazole, posaconazole, and voriconazole.
Niacin
Clinical Impact: Cases of myopathy and rhabdomyolysis have been observed with concomitant use of lipid modifying dosages of niacin (≥1 gram/day niacin) with LIPITOR.
Intervention: Consider if the benefit of using lipid modifying dosages of niacin concomitantly with LIPITOR outweighs the increased risk of myopathy and rhabdomyolysis. If concomitant use is decided, monitor patients for signs and symptoms of myopathy particularly during initiation of therapy and during upward dose titration of either drug.
Fibrates (other than Gemfibrozil)
Clinical Impact: Fibrates may cause myopathy when given alone. The risk of myopathy and rhabdomyolysis is increased with concomitant use of fibrates with LIPITOR.
Intervention: Consider if the benefit of using fibrates concomitantly with LIPITOR outweighs the increased risk of myopathy and rhabdomyolysis. If concomitant use is decided, monitor patients for signs and symptoms of myopathy particularly during initiation of therapy and during upward dose titration of either drug.
Colchicine
Clinical Impact: Cases of myopathy and rhabdomyolysis have been reported with concomitant use of colchicine with LIPITOR.
Intervention: Consider the risk/benefit of concomitant use of colchicine with LIPITOR. If concomitant use is decided, monitor patients for signs and symptoms of myopathy particularly during initiation of therapy and during upward dose titration of either drug.
Grapefruit Juice
Clinical Impact: Grapefruit juice consumption, especially excessive consumption, more than 1.2 liters/daily, can raise the plasma levels of atorvastatin and may increase the risk of myopathy and rhabdomyolysis.
Intervention: Avoid intake of large quantities of grapefruit juice, more than 1.2 liters daily, when taking LIPITOR.

7.2 Drug Interactions that may Decrease Exposure to LIPITOR

Table 3 presents drug interactions that may decrease exposure to LIPITOR and instructions for preventing or managing them.

Table 3. Drug Interactions that may Decrease Exposure to LIPITOR:

Rifampin
Clinical Impact: Concomitant administration of LIPITOR with rifampin, an inducer of cytochrome P450 3A4 and inhibitor of OATP1B1, can lead to variable reductions in plasma concentrations of atorvastatin. Due to the dual interaction mechanism of rifampin, delayed administration of LIPITOR after administration of rifampin has been associated with a significant reduction in atorvastatin plasma concentrations.
Intervention: Administer LIPITOR and rifampin simultaneously.

7.3 LIPITOR Effects on Other Drugs

Table 4 presents LIPITOR’s effect on other drugs and instructions for preventing or managing them.

Table 4. LIPITOR Effects on Other Drugs:

Oral Contraceptives
Clinical Impact: Co-administration of LIPITOR and an oral contraceptive increased plasma concentrations of norethindrone and ethinyl estradiol [see Clinical Pharmacology (12.3)].
Intervention: Consider this when selecting an oral contraceptive for patients taking LIPITOR.
Digoxin
Clinical Impact: When multiple doses of LIPITOR and digoxin were co-administered, steady state plasma digoxin concentrations increased [see Clinical Pharmacology (12.3)].
Intervention: Monitor patients taking digoxin appropriately.

8.1. Pregnancy

Risk Summary

Discontinue LIPITOR when pregnancy is recognized. Alternatively, consider the ongoing therapeutic needs of the individual patient. LIPITOR decreases synthesis of cholesterol and possibly other biologically active substances derived from cholesterol; therefore, LIPITOR may cause fetal harm when administered to pregnant patients based on the mechanism of action [see Clinical Pharmacology (12.1)]. In addition, treatment of hyperlipidemia is not generally necessary during pregnancy. Atherosclerosis is a chronic process and the discontinuation of lipid-lowering drugs during pregnancy should have little impact on the outcome of long-term therapy of primary hyperlipidemia for most patients.

Available data from case series and prospective and retrospective observational cohort studies over decades of use with statins in pregnant women have not identified a drug-associated risk of major congenital malformations. Published data from prospective and retrospective observational cohort studies with LIPITOR use in pregnant women are insufficient to determine if there is a drug-associated risk of miscarriage (see Data). In animal reproduction studies, no adverse developmental effects were observed in pregnant rats or rabbits orally administered atorvastatin at doses that resulted in up to 30 and 20 times, respectively, the human exposure at the maximum recommended human dose (MRHD) of 80 mg, based on body surface area (mg/m²). In rats administered atorvastatin during gestation and lactation, decreased postnatal growth and development delay were observed at doses ≥6 times the MRHD (see Data).

The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively.

Data

Human Data

A Medicaid cohort linkage study of 1152 statin-exposed pregnant women compared to 886,996 controls did not find a significant teratogenic effect from maternal use of statins in the first trimester of pregnancy, after adjusting for potential confounders – including maternal age, diabetes mellitus, hypertension, obesity, and alcohol and tobacco use – using propensity score-based methods. The relative risk of congenital malformations between the group with statin use and the group with no statin use in the first trimester was 1.07 (95% confidence interval 0.85 to 1.37) after controlling for confounders, particularly pre-existing diabetes mellitus. There were also no statistically significant increases in any of the organ-specific malformations assessed after accounting for confounders. In the majority of pregnancies, statin treatment was initiated prior to pregnancy and was discontinued at some point in the first trimester when pregnancy was identified. Study limitations include reliance on physician coding to define the presence of a malformation, lack of control for certain confounders such as body mass index, use of prescription dispensing as verification for the use of a statin, and lack of information on non-live births.

Animal Data

Atorvastatin was administered to pregnant rats and rabbits during organogenesis at oral doses up to 300 mg/kg/day and 100 mg/kg/day, respectively. Atorvastatin was not teratogenic in rats at doses up to 300 mg/kg/day or in rabbits at doses up to 100 mg/kg/day. These doses resulted in multiples of about 30 times (rat) or 20 times (rabbit) the human exposure at the MRHD based on surface area (mg/m²). In rats, the maternally toxic dose of 300 mg/kg resulted in increased post-implantation loss and decreased fetal body weight. At the maternally toxic doses of 50 and 100 mg/kg/day in rabbits, there was increased post-implantation loss, and at 100 mg/kg/day fetal body weights were decreased.

In a study in pregnant rats administered 20, 100, or 225 mg/kg/day from gestation day 7 through to lactation day 20 (weaning), there was decreased survival at birth, postnatal day 4, weaning, and post-weaning in pups of mothers dosed with 225 mg/kg/day, a dose at which maternal toxicity was observed. Pup body weight was decreased through postnatal day 21 at 100 mg/kg/day, and through postnatal day 91 at 225 mg/kg/day. Pup development was delayed (rotorod performance at 100 mg/kg/day and acoustic startle at 225 mg/kg/day; pinnae detachment and eye-opening at 225 mg/kg/day). These doses correspond to 6 times (100 mg/kg) and 22 times (225 mg/kg) the human exposure at the MRHD, based on AUC.

Atorvastatin crosses the rat placenta and reaches a level in fetal liver equivalent to that of maternal plasma.

8.2. Lactation

Risk Summary

There is no information about the presence of atorvastatin in human milk, the effects of the drug on the breastfed infant or the effects of the drug on milk production. However, it has been shown that another drug in this class passes into human milk. Studies in rats have shown that atorvastatin and/or its metabolites are present in the breast milk of lactating rats. When a drug is present in animal milk, it is likely that the drug will be present in human milk (see Data). Statins, including LIPITOR, decrease cholesterol synthesis and possibly the synthesis of other biologically active substances derived from cholesterol and may cause harm to the breastfed infant.

Because of the potential for serious adverse reactions in a breastfed infant, based on the mechanism of action, advise patients that breastfeeding is not recommended during treatment with LIPITOR [see Use in Specific Populations (8.1), Clinical Pharmacology (12.1)].

Data

Following a single oral administration of 10 mg/kg of radioactive atorvastatin to lactating rats, the concentration of total radioactivity was determined. Atorvastatin and/or its metabolites were measured in the breast milk and pup plasma at a 2:1 ratio (milk:plasma).

8.4. Pediatric Use

The safety and effectiveness of LIPITOR as an adjunct to diet to reduce LDL-C have been established pediatric patients 10 years of age and older with HeFH. Use of LIPITOR for this indication is based on a double-blind, placebo-controlled clinical trial in 187 pediatric patients 10 years of age and older with HeFH. In this limited controlled trial, there was no significant effect on growth or sexual maturation in the boys or girls, or on menstrual cycle length in girls.

The safety and effectiveness of LIPITOR as an adjunct to other LDL-C-lowering therapies to reduce LDL-C have been established pediatric patients 10 years of age and older with HoFH. Use of LIPITOR for this indication is based on a trial without a concurrent control group in 8 pediatric patients 10 years of age and older with HoFH [see Clinical Studies (14)].

The safety and effectiveness of LIPITOR have not been established in pediatric patients younger than 10 years of age with HeFH or HoFH, or in pediatric patients with other types of hyperlipidemia (other than HeFH or HoFH).

8.5. Geriatric Use

Of the total number of LIPITOR-treated patients in clinical trials, 15,813 (40%) were ≥65 years old and 2,800 (7%) were ≥75 years old. No overall differences in safety or effectiveness were observed between these patients and younger patients.

Advanced age (≥65 years) is a risk factor for LIPITOR-associated myopathy and rhabdomyolysis. Dose selection for an elderly patient should be cautious, recognizing the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy and the higher risk of myopathy. Monitor geriatric patients receiving LIPITOR for the increased risk of myopathy [see Warnings and Precautions (5.1) and Clinical Pharmacology (12.3)].

8.6. Renal Impairment

Renal impairment is a risk factor for myopathy and rhabdomyolysis. Monitor all patients with renal impairment for development of myopathy. Renal impairment does not affect the plasma concentrations of LIPITOR, therefore there is no dosage adjustment in patients with renal impairment [see Warnings and Precautions (5.1) and Clinical Pharmacology (12.3)].

8.7. Hepatic Impairment

In patients with chronic alcoholic liver disease, plasma concentrations of LIPITOR are markedly increased. Cmax and AUC are each 4-fold greater in patients with Childs-Pugh A disease. Cmax and AUC are approximately 16-fold and 11-fold increased, respectively, in patients with Childs-Pugh B disease. LIPITOR is contraindicated in patients with acute liver failure or decompensated cirrhosis [see Contraindications (4)].

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.