Source: FDA, National Drug Code (US) Revision Year: 2014
Active liver disease or unexplained persistent elevations of hepatic transaminase levels.
Hypersensitivity to any component of LIPTRUZET [see Adverse Reactions (6.2)].
Women who are pregnant or may become pregnant. LIPTRUZET may cause fetal harm when administered to a pregnant woman. Serum cholesterol and triglycerides increase during normal pregnancy, and cholesterol or cholesterol derivatives are essential for fetal development. Atherosclerosis is a chronic process and discontinuation of lipid-lowering drugs during pregnancy should have little impact on the outcome of long-term therapy of primary hypercholesterolemia. There are no adequate and wellcontrolled studies of LIPTRUZET use during pregnancy; however in rare reports, congenital anomalies were observed following intrauterine exposure to statins. In rat and rabbit animal reproduction studies, atorvastatin revealed no evidence of teratogenicity. LIPTRUZET should be administered to women of childbearing age only when such patients are highly unlikely to conceive and have been informed of the potential hazards. If the patient becomes pregnant while taking this drug, LIPTRUZET should be discontinued immediately, and the patient should be apprised of the potential hazard to the fetus [see Use in Specific Populations (8.1)].
Nursing mothers. It is not known whether atorvastatin is excreted into human milk; however, a small amount of another drug in this class does pass into breast milk. Because statins have the potential for serious adverse reactions in nursing infants, women who require LIPTRUZET treatment should not breast-feed their infants [see Use in Specific Populations (8.3)].
Rare cases of rhabdomyolysis with acute renal failure secondary to myoglobinuria have been reported with atorvastatin and with other drugs in this class. A history of renal impairment may be a risk factor for the development of rhabdomyolysis. Such patients merit closer monitoring for skeletal muscle effects.
Atorvastatin, like other statins, occasionally causes myopathy, defined as muscle aches or muscle weakness in conjunction with increases in creatine phosphokinase (CPK) values >10 times upper limit of normal (ULN). The concomitant use of higher doses of atorvastatin with certain drugs such as cyclosporine and strong CYP3A4 inhibitors (e.g., clarithromycin, itraconazole, and HIV protease inhibitors) increases the risk of myopathy/rhabdomyolysis.
There have been rare reports of immune-mediated necrotizing myopathy (IMNM), an autoimmune myopathy, associated with statin use. IMNM is characterized by: proximal muscle weakness and elevated serum creatine kinase, which persist despite discontinuation of statin treatment; muscle biopsy showing necrotizing myopathy without significant inflammation; improvement with immunosuppressive agents.
Myopathy should be considered in any patient with diffuse myalgias, muscle tenderness or weakness, and/or marked elevation of CPK. Patients should be advised to report promptly unexplained muscle pain, tenderness or weakness, particularly if accompanied by malaise or fever or if muscle signs and symptoms persist after discontinuing LIPTRUZET. LIPTRUZET therapy should be discontinued if markedly elevated CPK levels occur or myopathy is diagnosed or suspected.
The risk of myopathy during treatment with statins is increased with concurrent administration of cyclosporine, fibric acid derivatives, erythromycin, clarithromycin, the hepatitis C protease inhibitor telaprevir, combinations of HIV protease inhibitors, including saquinavir plus ritonavir, lopinavir plus ritonavir, tipranavir plus ritonavir, darunavir plus ritonavir, fosamprenavir, and fosamprenavir plus ritonavir, niacin, or azole antifungals. Physicians considering combined therapy with LIPTRUZET and fibric acid derivatives, erythromycin, clarithromycin, a combination of saquinavir plus ritonavir, lopinavir plus ritonavir, darunavir plus ritonavir, fosamprenavir, or fosamprenavir plus ritonavir, azole antifungals, or lipidmodifying doses of niacin should carefully weigh the potential benefits and risks and should carefully monitor patients for any signs or symptoms of muscle pain, tenderness, or weakness, particularly during the initial months of therapy and during any periods of upward dosage titration of either drug. Lower starting and maintenance doses of LIPTRUZET should be considered when taken concomitantly with the aforementioned drugs [See Drug Interactions (7)]. Periodic CPK determinations may be considered in such situations, but there is no assurance that such monitoring will prevent the occurrence of severe myopathy.
Prescribing recommendations for interacting agents are summarized in Table 1 [see also Dosage and Administration (2.3), Drug Interactions (7), Clinical Pharmacology (12.3)].
Table 1. Drug Interactions Associated with Increased Risk of Myopathy/Rhabdomyolysis with Atorvastatin:
Interacting Agents | Prescribing Recommendations for LIPTRUZET |
---|---|
Cyclosporine, HIV protease inhibitors (tipranavir plus ritonavir), hepatitis C protease inhibitor (telaprevir), gemfibrozil | Avoid LIPTRUZET. |
HIV protease inhibitor (lopinavir plus ritonavir) | Use with caution and lowest dose necessary. |
Clarithromycin, itraconazole, HIV protease inhibitors (saquinavir plus ritonavir*, darunavir plus ritonavir, fosamprenavir, fosamprenavir plus ritonavir) | Do not exceed 10/20 mg LIPTRUZET daily. |
HIV protease inhibitor (nelfinavir), hepatitis C protease inhibitor (boceprevir) | Do not exceed 10/40 mg LIPTRUZET daily. |
* Use with caution and with the lowest dose necessary [see Clinical Pharmacology (12.3)]
Cases of myopathy, including rhabdomyolysis, have been reported with atorvastatin coadministered with colchicine, and caution should be exercised when prescribing LIPTRUZET with colchicine [see Drug Interactions (7.10)].
LIPTRUZET therapy should be temporarily withheld or discontinued in any patient with an acute, serious condition suggestive of a myopathy or having a risk factor predisposing to the development of renal failure secondary to rhabdomyolysis (e.g., severe acute infection, hypotension, major surgery, trauma, severe metabolic, endocrine and electrolyte disorders, and uncontrolled seizures).
In clinical trials, there was no excess of myopathy or rhabdomyolysis associated with ezetimibe compared with the relevant control arm (placebo or statin alone). However, myopathy and rhabdomyolysis are known adverse reactions to statins and other lipid-lowering drugs. In clinical trials, the incidence of creatine phosphokinase (CPK) >10 times ULN was 0.2% for ezetimibe vs. 0.1% for placebo, and 0.1% for ezetimibe coadministered with a statin vs. 0.4% for statins alone. Risk for skeletal muscle toxicity increases with higher doses of statin, advanced age (>65), hypothyroidism, renal impairment, and depending on the statin used, concomitant use of other drugs.
In postmarketing experience with ezetimibe, cases of myopathy and rhabdomyolysis have been reported. Most patients who developed rhabdomyolysis were taking a statin prior to initiating ezetimibe. However, rhabdomyolysis has been reported with ezetimibe monotherapy and with the addition of ezetimibe to agents known to be associated with increased risk of rhabdomyolysis, such as fibric acid derivatives. LIPTRUZET and a fenofibrate, if taking concomitantly, should both be immediately discontinued if myopathy is diagnosed or suspected. The presence of muscle symptoms and a CPK level >10 times the ULN indicates myopathy.
Statins, like some other lipid-lowering therapies, have been associated with biochemical abnormalities of liver function. Persistent elevations (>3 times ULN occurring on 2 or more occasions) in serum transaminases occurred in 0.7% of patients who received atorvastatin in clinical trials. The incidence of these abnormalities was 0.2%, 0.2%, 0.6%, and 2.3% for 10, 20, 40, and 80 mg atorvastatin, respectively.
One patient in clinical trials of atorvastatin developed jaundice. Increases in liver function tests (LFT) in other patients were not associated with jaundice or other clinical signs or symptoms. Upon dose reduction, drug interruption, or discontinuation, transaminase levels returned to or near pretreatment levels without sequelae. Eighteen of 30 patients with persistent LFT elevations continued treatment with a reduced dose of atorvastatin.
In controlled clinical studies, the incidence of consecutive elevations (≥3 times ULN) in hepatic transaminase levels was similar between ezetimibe (0.5%) and placebo (0.3%).
In controlled clinical combination studies of ezetimibe coadministered with atorvastatin, the incidence of consecutive elevations (≥3 times ULN) in hepatic transaminase levels was 0.6% for patients treated with ezetimibe administered with atorvastatin. These elevations in transaminases were generally asymptomatic, not associated with cholestasis, and returned to baseline after discontinuation of therapy or with continued treatment.
It is recommended that liver enzyme tests be obtained prior to initiating therapy with LIPTRUZET and repeated as clinically indicated. There have been rare postmarketing reports of fatal and non-fatal hepatic failure in patients taking statins, including atorvastatin. If serious liver injury with clinical symptoms and/or hyperbilirubinemia or jaundice occurs during treatment with LIPTRUZET, promptly interrupt therapy. If an alternate etiology is not found, do not restart LIPTRUZET.
LIPTRUZET should be used with caution in patients who consume substantial quantities of alcohol and/or have a history of liver disease. Active liver disease or unexplained persistent transaminase elevations are contraindications to the use of LIPTRUZET [see Contraindications (4)].
Increases in HbA1c and fasting serum glucose levels have been reported with HMG-CoA reductase inhibitors, including atorvastatin.
Statins interfere with cholesterol synthesis and theoretically might blunt adrenal and/or gonadal steroid production. Clinical studies have shown that atorvastatin does not reduce basal plasma cortisol concentration or impair adrenal reserve and that ezetimibe did not impair adrenocortical steroid hormone production. The effects of statins on male fertility have not been studied in adequate numbers of patients. The effects, if any, on the pituitary-gonadal axis in premenopausal women are unknown. Caution should be exercised if LIPTRUZET is administered concomitantly with drugs that may decrease the levels or activity of endogenous steroid hormones, such as ketoconazole, spironolactone, and cimetidine.
In a post-hoc analysis of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) study where atorvastatin 80 mg vs. placebo was administered in 4,731 subjects without CHD who had a stroke or TIA within the preceding 6 months, a higher incidence of hemorrhagic stroke was seen in the atorvastatin 80 mg group compared to placebo (55, 2.3% atorvastatin vs. 33, 1.4% placebo; HR: 1.68, 95% CI: 1.09, 2.59; p=0.0168). The incidence of fatal hemorrhagic stroke was similar across treatment groups (17 vs. 18 for the atorvastatin and placebo groups, respectively). The incidence of nonfatal hemorrhagic stroke was significantly higher in the atorvastatin (38, 1.6%) group as compared to the placebo group (16, 0.7%). Some baseline characteristics, including hemorrhagic and lacunar stroke on study entry, were associated with a higher incidence of hemorrhagic stroke in the atorvastatin group.
Brain hemorrhage was seen in a female dog treated for 3 months at 120 mg/kg/day. Brain hemorrhage and optic nerve vacuolation were seen in another female dog that was sacrificed in moribund condition after 11 weeks of escalating doses up to 280 mg/kg/day. The 120 mg/kg dose resulted in a systemic exposure approximately 16 times the human plasma area-under-the-curve (AUC, 0-24 hours) based on the maximum human dose of 80 mg/day. A single tonic convulsion was seen in each of 2 male dogs (one treated at 10 mg/kg/day and one at 120 mg/kg/day) in a 2-year study. No CNS lesions have been observed in mice after chronic treatment for up to 2 years at doses up to 400 mg/kg/day or in rats at doses up to 100 mg/kg/day. These doses were 6 to 11 times (mouse) and 8 to 16 times (rat) the human AUC based on the maximum recommended human dose of 80 mg/day.
CNS vascular lesions, characterized by perivascular hemorrhages, edema, and mononuclear cell infiltration of perivascular spaces, have been observed in dogs treated with other members of this class. A chemically similar drug in this class produced optic nerve degeneration (W allerian degeneration of retinogeniculate fibers) in clinically normal dogs in a dose-dependent fashion at a dose that produced plasma drug levels about 30 times higher than the mean drug level in humans taking the highest recommended dose.
The following serious adverse reactions are discussed in greater detail in other sections of the label:
Because clinical studies are conducted under widely varying conditions, adverse reaction rates observed in the clinical studies of a drug cannot be directly compared to rates in the clinical studies of another drug and may not reflect the rates observed in clinical practice.
In a LIPTRUZET (ezetimibe and atorvastatin) placebo-controlled clinical trial, 628 patients (age range 18-86 years, 59% women, 85% Caucasians, 6% Blacks, 5% Hispanics, 3% Asians) with a median treatment duration of 12 weeks, 6% of patients on LIPTRUZET and 5% of patients on placebo discontinued due to adverse reactions.
The most common adverse reactions in the group treated with LIPTRUZET that led to treatment discontinuation and occurred at a rate greater than placebo were:
The most commonly reported adverse reactions (incidence ≥2% and greater than placebo) in this trial were: increased ALT (5%), increased AST (4%), and musculoskeletal pain (4%).
LIPTRUZET has been evaluated for safety in 2403 patients in 7 clinical trials (one placebo-controlled trial and six active-controlled trials).
Table 2 summarizes the frequency of clinical adverse reactions reported in ≥2% of patients treated with LIPTRUZET (n=255) and at an incidence greater than placebo, regardless of causality assessment, from the placebo-controlled trial.
Table 2*. Clinical and Selected Laboratory Adverse Reactions Occurring in ≥2% of Patients Treated with LIPTRUZET and at an Incidence Greater than Placebo, Regardless of Causality:
Body System/Organ Class | Placebo (%) | Ezetimibe 10 mg (%) | Atorvastatin† (%) | LIPTRUZET† (%) |
---|---|---|---|---|
Adverse Reaction | n=60 | n=65 | n=248 | n=255 |
Nervous system disorders | ||||
Dizziness | 0 | 6 | <1 | 2 |
Respiratory, thoracic, and mediastinal disorders | ||||
Coughing | 0 | 3 | <1 | 2 |
Gastrointestinal disorders | ||||
Abdominal pain | 2 | 2 | 4 | 3 |
Nausea | 0 | 2 | 5 | 3 |
Musculoskeletal and connective tissue disorders | ||||
Arthralgia | 0 | 5 | 6 | 3 |
Muscle weakness | 0 | 2 | 0 | 2 |
Musculoskeletal pain | 3 | 8 | 5 | 4 |
Metabolism and nutrition disorders | ||||
Hyperkalemia | 0 | 0 | <1 | 2 |
Infections and infestations | ||||
Bronchitis | 0 | 2 | 2 | 2 |
Sinusitis | 0 | 3 | 2 | 2 |
Vascular disorders | ||||
Hot flushes | 0 | 0 | <1 | 2 |
Investigations | ||||
ALT increased | 0 | 0 | 2 | 5 |
AST increased | 0 | 0 | <1 | 4 |
* Placebo-controlled combination study in which the active ingredients equivalent to LIPTRUZET were coadministered.
† All doses.
After completing the 12-week study, eligible patients were assigned to coadministered ezetimibe and atorvastatin equivalent to LIPTRUZET (10/10-10/80) or atorvastatin (10-80 mg/day) for an additional 48 weeks. The long-term coadministration of ezetimibe plus atorvastatin had an overall safety profile similar to that of atorvastatin alone.
In 10 double-blind, placebo-controlled clinical trials, 2396 patients with primary hyperlipidemia (age range 9-86 years, 50% women, 90% Caucasians, 5% Blacks, 3% Hispanics, 2% Asians) and elevated LDL-C were treated with ezetimibe 10 mg/day for a median treatment duration of 12 weeks (range 0 to 39 weeks).
Adverse reactions reported in ≥2% of patients treated with ezetimibe and at an incidence greater than placebo regardless of causality assessment are shown in Table 3.
Table 3. Clinical Adverse Reactions Occurring in ≥2% of Patients Treated with Ezetimibe and at an Incidence Greater than Placebo, Regardless of Causality:
|<_.Body System/Organ Class |<>_.Ezetimibe 10 mg () |<>_.Placebo ()
Adverse Reaction | n=2396 | n=1159 |
---|---|---|
Gastrointestinal disorders | ||
Diarrhea | 4.1 | 3.7 |
General disorders and administration site conditions | ||
Fatigue | 2.4 | 1.5 |
Infections and infestations | ||
Influenza | 2.0 | 1.5 |
Sinusitis | 2.8 | 2.2 |
Upper respiratory tract infection | 4.3 | 2.5 |
Musculoskeletal and connective tissue disorders | ||
Arthralgia | 3.0 | 2.2 |
Pain in extremity | 2.7 | 2.5 |
In an atorvastatin placebo-controlled clinical trial database of 16,066 patients (8755 atorvastatin vs. 7311 placebo; age range 10–93 years, 39% women, 91% Caucasians, 3% Blacks, 2% Asians, 4% other) with a median treatment duration of 53 weeks, 9.7% of patients on atorvastatin and 9.5% of the patients on placebo discontinued due to adverse reactions regardless of causality.
The most commonly reported adverse reactions (incidence ≥2% and greater than placebo) regardless of causality, in patients treated with atorvastatin in placebo controlled trials (n=8755) were: nasopharyngitis (8.3%), arthralgia (6.9%), diarrhea (6.8%), pain in extremity (6.0%), and urinary tract infection (5.7%).
Table 4 summarizes the frequency of clinical adverse reactions, regardless of causality, reported in ≥2% and at a rate greater than placebo in patients treated with atorvastatin (n=8755), from seventeen placebo-controlled trials.
Table 4. Clinical Adverse Reactions Occurring in >2% in Patients Treated with any dose of Atorvastatin and at an Incidence Greater than Placebo Regardless of Causality (% of patients):
Adverse Reaction* | Any dose n=8755 | Atorvastatin 10 mg n=3908 | Atorvastatin 20 mg n=188 | Atorvastatin 40 mg n=604 | Atorvastatin 80 mg n=4055 | Placebo n=7311 |
---|---|---|---|---|---|---|
Nasopharyngitis | 8.3 | 12.9 | 5.3 | 7.0 | 4.2 | 8.2 |
Arthralgia | 6.9 | 8.9 | 11.7 | 10.6 | 4.3 | 6.5 |
Diarrhea | 6.8 | 7.3 | 6.4 | 14.1 | 5.2 | 6.3 |
Pain in extremity | 6.0 | 8.5 | 3.7 | 9.3 | 3.1 | 5.9 |
Urinary tract infection | 5.7 | 6.9 | 6.4 | 8.0 | 4.1 | 5.6 |
Dyspepsia | 4.7 | 5.9 | 3.2 | 6.0 | 3.3 | 4.3 |
Nausea | 4.0 | 3.7 | 3.7 | 7.1 | 3.8 | 3.5 |
Musculoskeletal pain | 3.8 | 5.2 | 3.2 | 5.1 | 2.3 | 3.6 |
Muscle spasms | 3.6 | 4.6 | 4.8 | 5.1 | 2.4 | 3.0 |
Myalgia | 3.5 | 3.6 | 5.9 | 8.4 | 2.7 | 3.1 |
Insomnia | 3.0 | 2.8 | 1.1 | 5.3 | 2.8 | 2.9 |
Pharyngolaryngeal pain | 2.3 | 3.9 | 1.6 | 2.8 | 0.7 | 2.1 |
* Adverse Reaction >2% in any dose greater than placebo
Because the reactions below are reported voluntarily from a population of uncertain size, it is generally not possible to reliably estimate their frequency or establish a causal relationship to drug exposure.
The additional events described below have been identified during post-approval use of ezetimibe and/or atorvastatin.
Blood and lymphatic system disorders: thrombocytopenia
Nervous system disorders: headache; paresthesia; peripheral neuropathy
There have been rare postmarketing reports of cognitive impairment (e.g., memory loss, forgetfulness, amnesia, memory impairment, confusion) associated with statin use. These cognitive issues have been reported for all statins. The reports are generally nonserious, and reversible upon statin discontinuation, with variable times to symptom onset (1 day to years) and symptom resolution (median of 3 weeks).
Gastrointestinal disorders: pancreatitis
Skin and subcutaneous tissue disorders: angioedema; bullous rashes (including erythema multiforme, Stevens-Johnson syndrome, and toxic epidermal necrolysis); rash; urticaria
Musculoskeletal and connective tissue disorders: myopathy/rhabdomyolysis [see Warnings and Precautions (5.1)]
There have been rare reports of immune-mediated necrotizing myopathy associated with statin use [see Warnings and Precautions (5.1)].
Injury, poisoning and procedural complications: tendon rupture
Immune system disorders: anaphylaxis; hypersensitivity reactions
Hepatobiliary disorders: hepatitis; cholelithiasis; cholecystitis; fatal and nonfatal hepatic failure
Psychiatric disorders: depression
Laboratory abnormalities: elevated creatine phosphokinase
[See Clinical Pharmacology (12.3).]
The risk of myopathy during treatment with statins is increased with concurrent administration of fibric acid derivatives, lipid-modifying doses of niacin, cyclosporine, or strong CYP3A4 inhibitors (e.g., clarithromycin, HIV protease inhibitors, and itraconazole) [see Warnings and Precautions (5.1) and Clinical Pharmacology (12.3)].
Atorvastatin is metabolized by cytochrome P450 3A4. Concomitant administration of atorvastatin with strong inhibitors of CYP3A4 can lead to increases in plasma concentrations of atorvastatin. The extent of interaction and potentiation of effects depend on the variability of effect on CYP3A4. Because LIPTRUZET contains atorvastatin, the risk of myopathy during treatment with LIPTRUZET is increased with concurrent administration of:
Clarithromycin: Atorvastatin AUC was significantly increased with concomitant administration of 80 mg atorvastatin with clarithromycin (500 mg twice daily) compared to that of atorvastatin alone [see Clinical Pharmacology (12.3)]. Therefore, in patients taking clarithromycin, caution should be used when the LIPTRUZET dose exceeds 10/20 mg [see Warnings and Precautions (5.1) and Dosage and Administration (2.3)].
Combination of Protease Inhibitors: Atorvastatin AUC was significantly increased with concomitant administration of atorvastatin with several combinations of HIV protease inhibitors, as well as with the hepatitis C protease inhibitor telaprevir, compared to that of atorvastatin alone [see Clinical Pharmacology (12.3)]. Therefore, in patients taking the HIV protease inhibitor tipranavir plus ritonavir, or the hepatitis C protease inhibitor telaprevir, concomitant use of LIPTRUZET should be avoided. In patients taking the HIV protease inhibitor lopinavir plus ritonavir, caution should be used when prescribing LIPTRUZET and the lowest dose necessary should be used. In patients taking the HIV protease inhibitors saquinavir plus ritonavir, darunavir plus ritonavir, fosamprenavir, or fosamprenavir plus ritonavir, the dose of LIPTRUZET should not exceed 10/20 mg and should be used with caution [see Warnings and Precautions (5.1) and Dosage and Administration (2.3)]. In patients taking the HIV protease inhibitor nelfinavir or the hepatitis C protease inhibitor boceprevir, the dose of LIPTRUZET should not exceed 10/40 mg daily and close clinical monitoring is recommended.
Itraconazole: Atorvastatin AUC was significantly increased with concomitant administration of atorvastatin 40 mg and itraconazole 200 mg [see Clinical Pharmacology (12.3)]. Therefore, in patients taking itraconazole, do not use a LIPTRUZET dose that exceeds 10/20 mg [see Warnings and Precautions (5.1) and Dosage and Administration (2.3)].
Atorvastatin and atorvastatin-metabolites are substrates of the OATP1B1 transporter. Inhibitors of the OATP1B1 (e.g., cyclosporine) can increase the bioavailability of atorvastatin. Atorvastatin AUC was significantly increased with concomitant administration of atorvastatin 10 mg and cyclosporine 5.2 mg/kg/day compared to that of atorvastatin alone [see Clinical Pharmacology (12.3)].
In addition, ezetimibe and cyclosporine used concomitantly can increase exposure to both ezetimibe and cyclosporine. The degree of increase in ezetimibe exposure may be greater in patients with severe renal impairment.
The coadministration of LIPTRUZET with cyclosporine should be avoided [see Warnings and Precautions (5.1)].
Grapefruit juice contains one or more components that inhibit CYP3A4 and can increase plasma concentrations of atorvastatin, especially with excessive grapefruit juice consumption (>1.2 liters per day).
Due to an increased risk of myopathy/rhabdomyolysis when HMG-CoA reductase inhibitors are coadministered with gemfibrozil, concomitant administration of LIPTRUZET with gemfibrozil should be avoided [see Warnings and Precautions (5.1)].
Because it is known that the risk of myopathy during treatment with HMG-CoA reductase inhibitors is increased with concurrent administration of fenofibrates, LIPTRUZET should be administered with caution when used concomitantly with a fenofibrate [see Warnings and Precautions (5.1)].
Fenofibrates may increase cholesterol excretion into the bile, leading to cholelithiasis. If cholelithiasis is suspected in a patient receiving LIPTRUZET and a fenofibrate, gallbladder studies are indicated and alternative lipid-lowering therapy should be considered [see the product labeling for fenofibrate and fenofibric acid].
The risk of skeletal muscle effects may be enhanced when LIPTRUZET is used in combination with niacin; a reduction in LIPTRUZET dosage should be considered in this setting [see Warnings and Precautions (5.1)].
When multiple doses of atorvastatin and digoxin were coadministered, steady state plasma digoxin concentrations increased by approximately 20%. Patients taking digoxin should be monitored appropriately.
Coadministration of atorvastatin and an oral contraceptive increased AUC values for norethindrone and ethinyl estradiol [see Clinical Pharmacology (12.3)]. These increases should be considered when selecting an oral contraceptive for a woman taking LIPTRUZET.
Concomitant administration of atorvastatin with inducers of cytochrome P450 3A4 (e.g., efavirenz, rifampin) can lead to variable reductions in plasma concentrations of atorvastatin. Due to the dual interaction mechanism of rifampin, simultaneous coadministration of LIPTRUZET with rifampin is recommended, as delayed administration of atorvastatin after administration of rifampin has been associated with a significant reduction in atorvastatin plasma concentrations.
Cases of myopathy, including rhabdomyolysis, have been reported with atorvastatin coadministered with colchicine, and caution should be exercised when prescribing LIPTRUZET with colchicine.
Concomitant cholestyramine administration decreased the mean area under the curve (AUC) of total ezetimibe approximately 55%. The incremental LDL-C reduction due to adding ezetimibe to cholestyramine may be reduced by this interaction.
If LIPTRUZET is added to warfarin, a coumarin anticoagulant, the International Normalized Ratio (INR) should be appropriately monitored.
Pregnancy Category X.
[See Contraindications (4).]
LIPTRUZET is contraindicated in women who are or may become pregnant. Serum cholesterol and triglycerides increase during normal pregnancy. Lipid-lowering drugs offer no benefit during pregnancy, because cholesterol and cholesterol derivatives are needed for normal fetal development. Atherosclerosis is a chronic process, and discontinuation of lipid-lowering drugs during pregnancy should have little impact on long-term outcomes of primary hypercholesterolemia therapy.
There are no adequate and well-controlled studies of LIPTRUZET use during pregnancy. There have been rare reports of congenital anomalies following intrauterine exposure to statins. In a review of about 100 prospectively followed pregnancies in women exposed to other statins, the incidences of congenital anomalies, spontaneous abortions, and fetal deaths/stillbirths did not exceed the rate expected in the general population. However, this study was only able to exclude a three-to-four-fold increased risk of congenital anomalies over background incidence. In 89% of these cases, drug treatment started before pregnancy and stopped during the first trimester when pregnancy was identified.
Statins may cause fetal harm when administered to a pregnant woman. Because LIPTRUZET contains atorvastatin, LIPTRUZET should be administered to women of childbearing potential only when such patients are highly unlikely to conceive and have been informed of the potential hazards. If the woman becomes pregnant while taking LIPTRUZET, it should be discontinued immediately and the patient advised again as to the potential hazards to the fetus and the lack of known clinical benefit with continued use during pregnancy.
In oral (gavage) embryo-fetal development studies of ezetimibe conducted in rats and rabbits during organogenesis, there was no evidence of embryolethal effects at the doses tested (250, 500, 1000 mg/kg/day). In rats, increased incidences of common fetal skeletal findings (extra pair of thoracic ribs, unossified cervical vertebral centra, shortened ribs) were observed at 1000 mg/kg/day (~10 times the human exposure at 10 mg daily based on AUC0-24hr for total ezetimibe). In rabbits treated with ezetimibe, an increased incidence of extra thoracic ribs was observed at 1000 mg/kg/day (150 times the human exposure at 10 mg daily based on AUC0-24hr for total ezetimibe). Ezetimibe crossed the placenta when pregnant rats and rabbits were given multiple oral doses.
Multiple-dose studies of ezetimibe given in combination with statins in rats and rabbits during organogenesis result in higher ezetimibe and statin exposures. Reproductive findings occur at lower doses in combination therapy compared to monotherapy.
Atorvastatin crosses the rat placenta and reaches a level in fetal liver equivalent to that of maternal plasma. Atorvastatin was not teratogenic in rats at doses up to 300 mg/kg/day or in rabbits at doses up to 100 mg/kg/day. These doses resulted in multiples of about 30 times (rat) or 20 times (rabbit) the human exposure based on surface area (mg/m²).
In a study in rats given 20, 100, or 225 mg/kg/day, from gestation Day 7 through to lactation Day 21 (weaning), there was decreased pup survival at birth, neonate, weaning, and maturity in pups of mothers dosed with 225 mg/kg/day. Body weight was decreased on Days 4 and 21 in pups of mothers dosed at 100 mg/kg/day; pup body weight was decreased at birth and at Days 4, 21, and 91 at 225 mg/kg/day. Pup development was delayed (rotorod performance at 100 mg/kg/day and acoustic startle at 225 mg/kg/day; pinnae detachment and eye opening at 225 mg/kg/day). These doses correspond to 6 times (100 mg/kg) and 22 times (225 mg/kg) the human AUC at 80 mg/day. Rare reports of congenital anomalies have been received following intrauterine exposure to statin reductase inhibitors.
In rat studies, exposure to total ezetimibe in nursing pups was up to half of that observed in maternal plasma. It is not known whether ezetimibe is excreted into human breast milk.
It is not known whether atorvastatin is excreted in human milk, but a small amount of another drug in this class does pass into breast milk. Nursing rat pups had plasma and liver atorvastatin levels of 50% and 40%, respectively, of that in their mother’s milk. Because of the potential for adverse reactions in nursing infants, women taking LIPTRUZET should not breast-feed [see Contraindications (4)].
Safety and effectiveness have not been established in pediatric patients.
Based on total ezetimibe (ezetimibe + ezetimibe-glucuronide) there are no pharmacokinetic differences between adolescents and adults. Pharmacokinetic data in the pediatric population <10 years of age are not available.
Pharmacokinetic data in the pediatric population are not available.
Of the patients who received ezetimibe coadministered with atorvastatin in clinical studies, 1166 were 65 and older (this included 291 who were 75 and older). The effectiveness and safety of LIPTRUZET were similar between these patients and younger subjects. Greater sensitivity of some older individuals cannot be ruled out. Since advanced age (≥65 years) is a predisposing factor for myopathy, LIPTRUZET should be prescribed with caution in the elderly [See Clinical Pharmacology (12.3)].
In geriatric patients, no dosage adjustment of LIPTRUZET is necessary.
A history of renal impairment may be a risk factor for statin-associated myopathy. These patients merit closer monitoring for skeletal muscle effects [see Warnings and Precautions (5.1)].
In patients with renal impairment, no dosage adjustment of LIPTRUZET is necessary.
LIPTRUZET is contraindicated in patients with active liver disease or unexplained persistent elevations in hepatic transaminase levels [see Contraindications (4), Warnings and Precautions (5.2), and Clinical Pharmacology (12.3)].
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.