Source: Medicines & Healthcare Products Regulatory Agency (GB) Revision Year: 2021 Publisher: Accord-UK Ltd (Trading style: Accord), Whiddon Valley, Barnstaple, Devon, EX32 8NS
Hypersensitivity to oxycodone or to any of the excipients listed in section 6.1. Oxycodone must not be used in any situation where opioids are contraindicated: severe respiratory depression with hypoxia, paralytic ileus, acute abdomen, delayed gastric emptying, severe chronic obstructive lung disease, cor pulmonale, severe bronchial asthma, elevated carbon dioxide levels in the blood , moderate to severe hepatic impairment, chronic constipation.
Caution must be exercised when administering oxycodone to the debilitated elderly, opioid-dependent patients, patients with severely impaired pulmonary function, patients with impaired hepatic or renal function, patients with myxoedema, hypothyroidism, Addison’s disease, toxic psychosis, prostate hypertrophy, adrenocortical insufficiency, alcoholism, delirium tremens, diseases of the biliary tract, pancreatitis, inflammatory bowel disorders, hypotension, hypovolaemia, raised intracranial pressure, intracranial lesions or head injury (due to risk of increased intracranial pressure), reduced level of consciousness of uncertain origin, sleep apnoea, or patients taking benzodiazepines, other CNS depressants (including alcohol) or MAO inhibitors (see section 4.5).
The primary risk of opioid excess is respiratory depression.
Opioids may cause sleep-related breathing disorders including central sleep apnoea (CSA) and sleep-related hypoxemia. Opioid use may increase the risk of CSA in a dose-dependent manner in some patients. Opioids may also cause worsening of pre-existing sleep apnoea (see section 4.8). In patients who present with CSA, consider decreasing the total opioid dosage.
Concomitant use of oxycodone and sedative medicines such as benzodiazepines or related drugs may result in sedation, respiratory depression, coma and death. Because of these risks, concomitant prescribing with these sedative medicines should be reserved for patients for whom alternative treatment options are not possible.
If a decision is made to prescribe oxycodone concomitantly with sedative medicines, the lowest effective dose should be used, and the duration of treatment should be as short as possible (see also general dose recommendation in section 4.2).
The patients should be followed closely for signs and symptoms of respiratory depression and sedation. In this respect, it is strongly recommended to inform patients and their caregivers to be aware of these symptoms (see section 4.5).
Lynlor must be administered with caution in patients taking MAOIs or who have received MAOIs within the previous two weeks.
This medicine should not be used where there is a possibility of paralytic ileus occurring. Should paralytic ileus be suspected or occur during use, this medicine should be discontinued immediately.
This medicine should be used with caution pre-operatively and within the first 12-24 hours post-operatively.
As with all opioid preparations, oxycodone products should be used with caution following abdominal surgery as opioids are known to impair intestinal motility and should not be used until the physician is assured of normal bowel function.
Patients about to undergo additional pain relieving procedures (e.g. surgery, plexus blockade) should not receive this medicine for 6 hours prior to the intervention. If further treatment with oxycodone is indicated then the dosage should be adjusted to the new post-operative requirement.
For appropriate patients who suffer with chronic non-malignant pain, opioids should be used as part of a comprehensive treatment programme involving other medications and treatment modalities. A crucial part of the assessment of a patient with chronic non-malignant pain is the patient’s addiction and substance abuse history.
If opioid treatment is considered appropriate for the patient, then the main aim of treatment is not to minimise the dose of opioid, but rather to achieve a dose which provides adequate pain relief with a minimum of side effects. There must be frequent contact between physician and patient so that dosage adjustments can be made. It is strongly recommended that the physician defines treatment outcomes in accordance with pain management guidelines. The physician and patient can then agree to discontinue treatment if these objectives are not met.
For all patients, prolonged use of this product may lead to drug dependence (addiction), even at therapeutic doses. The risks are increased in individuals with current or past history of substance misuse disorder (including alcohol misuse) or mental health disorder (e.g., major depression).
Additional support and monitoring may be necessary when prescribing for patients at risk of opioid misuse.
A comprehensive patient history should be taken to document concomitant medications, including over-the-counter medicines and medicines obtained on-line, and past and present medical and psychiatric conditions.
Patients may find that treatment is less effective with chronic use and express a need to increase the dose to obtain the same level of pain control as initially experienced. Patients may also supplement their treatment with additional pain relievers. These could be signs that the patient is developing tolerance. The risks of developing tolerance should be explained to the patient.
Overuse or misuse may result in overdose and/or death. It is important that patients only use medicines that are prescribed for them at the dose they have been prescribed and do not give this medicine to anyone else.
Patients should be closely monitored for signs of misuse, abuse, or addiction.
The clinical need for analgesic treatment should be reviewed regularly.
Prior to starting treatment with any opioids, a discussion should be held with patients to put in place a withdrawal strategy for ending treatment with this medicine.
Drug withdrawal syndrome may occur upon abrupt cessation of therapy or dose reduction. When a patient no longer requires therapy, it is advisable to taper the dose gradually to minimise symptoms of withdrawal. Tapering from a high dose may take weeks to months.
The opioid drug withdrawal syndrome is characterised by some or all of the following: restlessness, lacrimation, rhinorrhoea, yawning, perspiration, chills, myalgia, mydriasis and palpitations. Other symptoms may also develop including irritability, agitation, anxiety, hyperkinesia, tremor, weakness, insomnia, anorexia, abdominal cramps, nausea, vomiting, diarrhoea, increased blood pressure, increased respiratory rate or heart rate.
If women take this drug during pregnancy, there is a risk that their newborn infants will experience neonatal withdrawal syndrome.
Hyperalgesia may be diagnosed if the patient on long-term opioid therapy presents with increased pain. This might be qualitatively and anatomically distinct from pain related to disease progression or to breakthrough pain resulting from development of opioid tolerance. Pain associated with hyperalgesia tends to be more diffuse than the pre-existing pain and less defined in quality. Symptoms of hyperalgesia may resolve with a reduction of opioid dose.
The capsules should be swallowed whole, and not chewed or crushed.
Abuse of oral dosage forms by parenteral administration can be expected to result in serious adverse events, such as local tissue necrosis, infection, pulmonary granulomas, increased risk of endocarditis, and valvular heart injury, which may be fatal.
Concomitant use of alcohol and this medicine may increase the undesirable effects of this medicine; concomitant use should be avoided.
Opioids, such as oxycodone hydrochloride, may influence the hypothalamic-pituitary-adrenal or – gonadal axes. Some changes that can be seen include an increase in serum prolactin, and decreases in plasma cortisol and testosterone. Clinical symptoms may manifest from these hormonal changes.
Oxycodone has not been studied in children younger than 12 years of age. The safety and efficacy of the capsules have not been demonstrated and the use in children younger than 12 years of age is therefore not recommended.
This medicine contains less than 1 mmol sodium (23mg) per capsule, that is to say essentially ‘sodium-free’.
The concomitant use of opioids with sedative medicines such as benzodiazepines or related drugs increases the risk of sedation, respiratory depression, coma and death because of additive CNS depressant effect. The dose and duration of concomitant use should be limited (see section 4.4).
Drugs which affect the CNS include, but are not limited to: other opioids, gabapentinoids such as pregabalin, anxiolytics, hypnotics and sedatives (including benzodiazepines), antipsychotics, antidepressants, phenothiazines, anaesthetics, muscle relaxants, antihypertensives and alcohol.
Concomitant administration of oxycodone with serotonin agents, such as a Selective Serotonin Re-uptake Inhibitor (SSRI) or a Serotonin Norepinephrine Re-uptake Inhibitor (SNRI) may cause serotonin toxicity. The symptoms of serotonin toxicity may include mental-status changes (e.g., agitation, hallucinations, coma), autonomic instability (e.g., tachycardia, labile blood pressure, hyperthermia), neuromuscular abnormalities (e.g., hyperreflexia, incoordination, rigidity), and/or gastrointestinal symptoms (e.g., nausea, vomiting, diarrhoea). Oxycodone should be used with caution and the dosage may need to be reduced in patients using these medications.
Concomitant administration of oxycodone with anticholinergics or medicines with anticholinergic activity (e.g. tricyclic anti-depressants, antihistamines, antipsychotics, muscle relaxants, anti-Parkinson drugs) may result in increased anticholinergic adverse effects. Oxycodone should be used with caution and the dosage may need to be reduced in patients using these medications.
MAO inhibitors are known to interact with narcotic analgesics. MAO-inhibitors cause CNS excitation or depression associated with hypertensive or hypotensive crisis (see section 4.4). Co-administration with monoamine oxidase inhibitors or within two weeks of discontinuation of their use should be avoided.
Alcohol may enhance the pharmacodynamic effects of this medicine, concomitant use should be avoided.
Oxycodone is metabolised mainly by CYP3A4, with a contribution from CYP2D6. The activities of these metabolic pathways may be inhibited or induced by various co-administered drugs or dietary elements. Oxycodone doses may need to be adjusted accordingly.
CYP3A4 inhibitors, such as macrolide antibiotics (e.g. clarithromycin, erythromycin and telithromycin), azole-antifungals (e.g. ketoconazole, voriconazole, itraconazole, and posaconazole), protease inhibitors (e.g. boceprevir, ritonavir, indinavir, nelfinavir and saquinavir), cimetidine and grapefruit juice may cause a reduced clearance of oxycodone that could cause an increase of the plasma concentrations of oxycodone. Therefore, the oxycodone dose may need to be adjusted accordingly.
Some specific examples are provided below:
CYP3A4 inducers, such as rifampicin, carbamazepine, phenytoin and St John’s Wort may induce the metabolism of oxycodone and cause an increased clearance of oxycodone that could cause a reduction of the plasma concentrations of oxycodone. The oxycodone dose may need to be adjusted accordingly.
Some specific examples are provided below:
Drugs that inhibit CYP2D6 activity, such as paroxetine and quinidine, may cause decreased clearance of oxycodone which could lead to an increase in oxycodone plasma concentrations. Concurrent administration of quinidine resulted in an increase in oxycodone Cmax by 11%, AUC by 13%, and t½ elim. by 14%. Also an increase in noroxycodone level was observed, (Cmax by 50%; AUC by 85%, and t½ elim. by 42%). The pharmacodynamic effects of oxycodone were not altered.
Lynlor capsules are not recommended for use in pregnancy nor during labour. There are limited data from the use of oxycodone in pregnant women.
Regular use during pregnancy may cause drug dependence in the foetus, leading to withdrawal symptoms in the neonate.
If opioid use is required for a prolonged period in a pregnant woman, advise the patient of the risk of neonatal opioid withdrawal syndrome and ensure that appropriate treatment will be available.
Administration during labour may depress respiration in the neonate and an antidote for the child should be readily available.
Administration to nursing women is not recommended as oxycodone may be secreted in breast milk and may cause respiratory depression in the infant.
Oxycodone may impair the ability to drive and use machines. Oxycodone may modify patients' reactions to a varying extent depending on the dosage and individual susceptibility. Therefore, patients should not drive or operate machinery if affected.
This medicine can impair cognitive function and can affect a patient’s ability to drive safely. This class of medicine is in the list of drugs included in regulations under 5a of the Road Traffic Act 1988. When prescribing this medicine, patients should be told:
Details regarding a new driving offence concerning driving after drugs have been taken in the UK may be found here: https://www.gov.uk/drug-driving-law.
Adverse drug reactions are typical of full opioid agonists. Tolerance and dependence may occur (see Section 4.4). Constipation may be prevented with an appropriate laxative. If nausea and vomiting are troublesome, oxycodone may be combined with an anti-emetic.
The following frequency categories form the basis for classification of the undesirable effects: Very common ≥1/10, Common ≥1/100 to <1/10, Uncommon ≥1/1,000 to <1/100, Rare ≥1/10,000 to <1/1,000, Very rare <1/10,000, Frequency not known – Cannot be estimated from the available data.
Uncommon: hypersensitivity.
Frequency not known: anaphylactic reaction, anaphylactoid reaction.
Common: decreased appetite.
Uncommon: dehydration.
Common: anxiety, confusional state, depression, insomnia, nervousness, abnormal thinking, abnormal dreams
Uncommon: agitation, affect lability, euphoric mood, hallucinations, decreased libido, disorientation, mood altered, restlessness, dysphoria
Frequency not known: aggression, drug dependence (see section 4.4).
Very common: somnolence, dizziness, headache.
Common: tremor, lethargy, sedation.
Uncommon: amnesia, convulsion, hypertonia, hypoaesthesia, involuntary muscle contractions, speech disorder, syncope, paraesthesia, dysgeusia, hypotonia.
Frequency not known: hyperalgesia, sleep apnoea syndrome.
Uncommon: visual impairment, miosis.
Uncommon: vertigo.
Cardiac disorders:
Uncommon: palpitations (in the context of withdrawal syndrome), supraventricular tachycardia.
Uncommon: vasodilatation, facial flushing.
Rare: hypotension, orthostatic hypotension.
Common: dyspnoea, bronchospasm, cough decreased.
Uncommon: respiratory depression, hiccups.
Very common: constipation, nausea, vomiting.
Common: abdominal pain, diarrhoea, dry mouth, dyspepsia.
Uncommon: dysphagia, flatulence, eructation, ileus, gastritis.
Frequency not known: dental caries.
Uncommon: increased hepatic enzymes, biliary colic.
Frequency not known: cholestasis.
Very common: pruritus.
Common: rash, hyperhidrosis.
Uncommon: dry skin, exfoliative dermatitis.
Rare: urticaria.
Uncommon: urinary retention, ureteral spasm.
Uncommon: erectile dysfunction, hypogonadism.
Frequency not known: amenorrhoea.
Common: asthenia, fatigue.
Uncommon: drug withdrawal syndrome, malaise, oedema, peripheral oedema, drug tolerance, thirst, pyrexia, chills.
Frequency not known: drug withdrawal syndrome neonatal
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme at: www.mhra.gov.uk/yellowcard or search for MHRA Yellow Card in the Google Play or Apple App Store.
Not applicable.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.