Source: Medicines Authority (MT) Revision Year: 2022 Publisher: Remedica Ltd, Aharnon Str., Limassol Industrial Estate, 3056 Limassol, Cyprus
Pharmacotherapeutic group: antiepileptics, other antiepileptics
ATC code: N03AX14
The active substance, levetiracetam, is a pyrrolidone derivative (S-enantiomer of αethyl-2-oxo-1-pyrrolidine acetamide), chemically unrelated to existing antiepileptic active substances.
The mechanism of action of levetiracetam still remains to be fully elucidated. In vitro and in vivo experiments suggest that levetiracetam does not alter basic cell characteristics and normal neurotransmission.
In vitro studies show that levetiracetam affects intraneuronal Ca2+ levels by partial inhibition of N-type Ca2+ currents and by reducing the release of Ca2+ from intraneuronal stores. In addition it partially reverses the reductions in GABA- and glycine-gated currents induced by zinc and β-carbolines. Furthermore, levetiracetam has been shown in in vitro studies to bind to a specific site in rodent brain tissue. This binding site is the synaptic vesicle protein 2A, believed to be involved in vesicle fusion and neurotransmitter exocytosis. Levetiracetam and related analogs show a rank order of affinity for binding to the synaptic vesicle protein 2A which correlates with the potency of their anti-seizure protection in the mouse audiogenic model of epilepsy. This finding suggests that the interaction between levetiracetam and the synaptic vesicle protein 2A seems to contribute to the antiepileptic mechanism of action of the medicinal product.
Levetiracetam induces seizure protection in a broad range of animal models of partial and primary generalised seizures without having a pro-convulsant effect. The primary metabolite is inactive. In man, an activity in both partial and generalised epilepsy conditions (epileptiform discharge/photoparoxysmal response) has confirmed the broad spectrum pharmacological profile of levetiracetam.
In adults, levetiracetam efficacy has been demonstrated in 3 double-blind, placebocontrolled studies at 1 000 mg, 2 000 mg, or 3 000 mg/day, given in 2 divided doses, with a treatment duration of up to 18 weeks. In a pooled analysis, the percentage of patients who achieved 50% or greater reduction from baseline in the partial onset seizure frequency per week at stable dose (12/14 weeks) was of 27.7%, 31.6% and 41.3% for patients on 1000, 2000 or 3000 mg levetiracetam respectively and of 12.6% for patients on placebo.
In paediatric patients (4 to 16 years of age), levetiracetam efficacy was established in a double-blind, placebo-controlled study, which included 198 patients and had a treatment duration of 14 weeks. In this study, the patients received levetiracetam as a fixed dose of 60 mg/kg/day (with twice a day dosing).
44.6% of the levetiracetam treated patients and 19.6% of the patients on placebo had a 50% or greater reduction from baseline in the partial onset seizure frequency per week. With continued long-term treatment, 11.4% of the patients were seizure-free for at least 6 months and 7.2% were seizure-free for at least 1 year.
In paediatric patients (1 month to less than 4 years of age), levetiracetam efficacy was established in a double-blind, placebo-controlled study, which included 116 patients and had a treatment duration of 5 days. In this study, patients were prescribed 20 mg/kg, 25 mg/kg, 40 mg/kg or 50 mg/kg daily dose of oral solution based on their age titration schedule. A dose of 20 mg/kg/day titrating to 40 mg/kg/day for infants one month to less than six months and a dose of 25 mg/kg/day titrating to 50 mg/kg/day for infants and children 6 months to less than 4 years old, was use in this study. The total daily dose was administered twice daily.
The primary measure of effectiveness was the responder rate (percent of patients with ≥50% reduction from baseline in average daily partial onset seizure frequency) assessed by a blinded central reader using a 48-hour video EEG. The efficacy analysis consisted of 109 patients who had at least 24 hours of video EEG in both baseline and evaluation periods. 43.6% of the levetiracetam treated patients and 19.6% of the patients on placebo were considered as responders. The results are consistent across age group. With continued long-term treatment, 8.6% of the patients were seizure-free for at least 6 months and 7.8% were seizure-free for at least 1 year. 35 infants aged less than 1 year with partial onset seizures have been exposed in placebo-control clinical studies of which only 13 were aged < 6 months.
Efficacy of levetiracetam as monotherapy was established in a double-blind, parallel group, non-inferiority comparison to carbamazepine-controlled release (CR) in 576 patients 16 years of age or older with newly or recently diagnosed epilepsy. The patients had to present with unprovoked partial seizures or with generalized tonic-clonic seizures only. The patients were randomized to carbamazepine CR 400 – 1200 mg/day or levetiracetam 1000–3000 mg/day, the duration of the treatment was up to 121 weeks depending on the response.
Six-month seizure freedom was achieved in 73.0% of levetiracetam-treated patients and 72.8% of carbamazepine-CR treated patients; the adjusted absolute difference between treatments was 0.2% (95% CI: -7.8 8.2). More than half of the subjects remained seizure free for 12 months (56.6% and 58.5% of subjects on levetiracetam and on carbamazepine CR respectively).
In a study reflecting clinical practice, the concomitant antiepileptic medication could be withdrawn in a limited number of patients who responded to levetiracetam adjunctive therapy (36 adult patients out of 69).
Levetiracetam efficacy was established in a double-blind, placebo-controlled study of 16 weeks duration, in patients 12 years of age and older suffering from idiopathic generalized epilepsy with myoclonic seizures in different syndromes. The majority of patients presented with juvenile myoclonic epilepsy.
In this study, levetiracetam, dose was 3000 mg/day given in 2 divided doses. 58.3% of the levetiracetam treated patients and 23.3% of the patients on placebo had at least a 50% reduction in myoclonic seizure days per week. With continued long-term treatment, 28.6% of the patients were free of myoclonic seizures for at least 6 months and 21.0% were free of myoclonic seizures for at least 1 year.
Levetiracetam efficacy was established in a 24-week double-blind, placebo-controlled study which included adults, adolescents and a limited number of children suffering from idiopathic generalized epilepsy with primary generalized tonic-clonic (PGTC) seizures in different syndromes (juvenile myoclonic epilepsy, juvenile absence epilepsy, childhood absence epilepsy, or epilepsy with Grand Mal seizures on awakening). In this study, levetiracetam dose was 3000 mg/day for adults and adolescents or 60 mg/kg/day for children, given in 2 divided doses.
72.2% of the levetiracetam treated patients and 45.2% of the patients on placebo had a 50% or greater decrease in the frequency of PGTC seizures per week. With continued long-term treatment, 47.4% of the patients were free of tonic-clonic seizures for at least 6 months and 31.5% were free of tonic-clonic seizures for at least 1 year.
Levetiracetam is a highly soluble and permeable compound. The pharmacokinetic profile is linear with low intra- and inter-subject variability. There is no modification of the clearance after repeated administration. There is no evidence for any relevant gender, race or circadian variability. The pharmacokinetic profile is comparable in healthy volunteers and in patients with epilepsy.
Due to its complete and linear absorption, plasma levels can be predicted from the oral dose of levetiracetam expressed as mg/kg bodyweight. Therefore, there is no need for plasma level monitoring of levetiracetam.
A significant correlation between saliva and plasma concentrations has been shown in adults and children (ratio of saliva/plasma concentrations ranged from 1 to 1.7 for oral tablet formulation and after 4 hours post-dose for oral solution formulation).
Levetiracetam is rapidly absorbed after oral administration. Oral absolute bioavailability is close to 100%.
Peak plasma concentrations (Cmax) are achieved at 1.3 hours after dosing. Steady-state is achieved after two days of a twice daily administration schedule.
Peak concentrations (Cmax) are typically 31 and 43 μg/mL following a single 1000 mg dose and repeated 1000 mg twice daily dose, respectively.
The extent of absorption is dose-independent and is not altered by food.
No tissue distribution data are available in humans.
Neither levetiracetam nor its primary metabolite are significantly bound to plasma proteins (<10%). The volume of distribution of levetiracetam is approximately 0.5 to 0.7 l/kg, a value close to the total body water volume.
Levetiracetam is not extensively metabolised in humans. The major metabolic pathway (24% of the dose) is an enzymatic hydrolysis of the acetamide group. Production of the primary metabolite, ucb L057, is not supported by liver cytochrome P450 isoforms. Hydrolysis of the acetamide group was measurable in a large number of tissues including blood cells. The metabolite ucb L057 is pharmacologically inactive.
Two minor metabolites were also identified. One was obtained by hydroxylation of the pyrrolidone ring (1.6% of the dose) and the other one by opening of the pyrrolidone ring (0.9% of the dose).
Other unidentified components accounted only for 0.6% of the dose.
No enantiomeric interconversion was evidenced in vivo for either levetiracetam or its primary metabolite.
In vitro, levetiracetam and its primary metabolite have been shown not to inhibit the major human liver cytochrome P450 isoforms (CYP3A4, 2A6, 2C9, 2C19, 2D6, 2E1 and 1A2), glucuronyl transferase (UGT1A1 AND UGT1A6) and epoxide hydroxylase activities. In addition, levetiracetam does not affect the in vitro glucuronidation of valproic acid.
In human hepatocytes in culture, levetiracetam had little or no effect on CYP1A2, SULT1E1 or UGT1A1. Levetiracetam caused mild induction of CYP2B6 and CYP3A4. The in vitro data and in vivo interaction data on oral contraceptives, digoxin and warfarin indicate that no significant enzyme induction is expected in vivo. Therefore, the interaction of levetiracetam with other substances, or vice versa, is unlikely.
The plasma half-life in adults was 7±1 hours and did not vary either with dose, route of administration or repeated administration. The mean total body clearance was 0.96 mL/min/kg.
The major route of excretion was via urine, accounting for a mean 95% of the dose (approximately 93% of the dose was excreted within 48 hours). Excretion via faeces accounted for only 0.3% of the dose.
The cumulative urinary excretion of levetiracetam and its primary metabolite accounted for 66% and 24% of the dose, respectively during the first 48 hours.
The renal clearance of levetiracetam and ucb L057 is 0.6 and 4.2 mL/min/kg respectively indicating that levetiracetam is excreted by glomerular filtration with subsequent tubular reabsorption and that the primary metabolite is also excreted by active tubular secretion in addition to glomerular filtration.
Levetiracetam elimination is correlated to creatinine clearance.
In the elderly, the half-life is increased by about 40% (10 to 11 hours). This is related to the decrease in renal function in this population (see section 4.2).
The apparent body clearance of both levetiracetam and of its primary metabolite is correlated to the creatinine clearance. It is therefore recommended to adjust the maintenance daily dose of levetiracetam, based on creatinine clearance in patients with moderate and severe renal impairment (see section 4.2).
In anuric end-stage renal disease adult subjects the half-life was approximately 25 and 3.1 hours during interdialytic and intradialytic periods, respectively. The fractional removal of levetiracetam was 51% during a typical 4-hour dialysis session.
In subjects with mild and moderate hepatic impairment, there was no relevant modification of the clearance of levetiracetam. In most subjects with severe hepatic impairment, the clearance of levetiracetam was reduced by more than 50% due to a concomitant renal impairment (see section 4.2).
Following single oral dose administration (20 mg/kg) to epileptic children (6 to 12 years), the half-life of levetiracetam was 6.0 hours. The apparent body weight adjusted clearance was approximately 30% higher than in epileptic adults.
Following repeated oral dose administration (20 to 60 mg/kg/day) to epileptic children (4 to 12 years), levetiracetam was rapidly absorbed. Peak plasma concentration was observed 0.5 to 1.0 hour after dosing. Linear and dose proportional increases were observed for peak plasma concentrations and area under the curve. The elimination half-life was approximately 5 hours. The apparent body clearance was 1.1 mL/min/kg.
Following single dose administration (20 mg/kg) of a 100 mg/mL oral solution to epileptic children (1 month to 4 years), levetiracetam was rapidly absorbed and peak plasma concentrations were observed approximately 1 hour after dosing. The pharmacokinetic results indicated that half-life was shorter (5.3 h) than for adults (7.2 h) and apparent clearance was faster (1.5 mL/min/kg) than for adults (0.96 mL/min/kg).
In the population pharmacokinetic analysis conducted in patients from 1 month to 16 years of age, body weight was significantly correlated to apparent clearance (clearance increased with an increase in body weight) and apparent volume of distribution. Age also had an influence on both parameters. This effect was pronounced for the younger infants, and subsided as age increased, to become negligible around 4 years of age.
In both population pharmacokinetic analyses, there was about a 20% increase of apparent clearance of levetiracetam when it was co-administered with an enzymeinducing antiepileptic medicinal product.
Non-clinical data reveal no special hazard for humans based on conventional studies of safety pharmacology, genotoxicity and carcinogenic potential. Adverse effects not observed in clinical studies but seen in the rat and to a lesser extent in the mouse at exposure levels similar to human exposure levels and with possible relevance for clinical use were liver changes, indicating an adaptive response such as increased weight and centrilobular hypertrophy, fatty infiltration and increased liver enzymes in plasma.
No adverse reactions on male or female fertility or reproduction performance were observed in rats at doses up to 1800 mg/kg/day (× 6 the MRHD [maximum recommended human dose] on a mg/m² or exposure basis) in parents and F1 generation.
Two embryo-foetal development (EFD) studies were performed in rats at 400, 1200 and 3600 mg/kg/day. At 3600 mg/kg/day, in only one of the 2 EFD studies, there was a slight decrease in foetal weight associated with a marginal increase in skeletal variations/minor anomalies. There was no effect on embryomortality and no increased incidence of malformations. The NOAEL (No Observed Adverse Effect Level) was 3 600 mg/kg/day for pregnant female rats (× 12 the MRHD on a mg/m² basis) and 1200 mg/kg/day for fetuses.
Four embryo-foetal development studies were performed in rabbits covering doses of 200, 600, 800, 1200 and 1800 mg/kg/day. The dose level of 1800 mg/kg/day induced a marked maternal toxicity and a decrease in foetal weight associated with increased incidence of foetuses with cardiovascular/skeletal anomalies. The NOAEL was <200 mg/kg/day for the dams and 200 mg/kg/day for the fetuses (equal to the MRHD on a mg/m² basis).
A peri- and post-natal development study was performed in rats with levetiracetam doses of 70, 350 and 1800 mg/kg/day. The NOAEL was ≥ 1800 mg/kg/day for the F0 females, and for the survival, growth and development of the F1 offspring up to weaning (× 6 the MRHD on a mg/m² basis).
Neonatal and juvenile animal studies in rats and dogs demonstrated that there were no adverse effects seen in any of the standard developmental or maturation endpoints at doses up to 1800 mg/kg/day (× 6-17 the MRHD on a mg/m² basis).
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.