RUKOBIA Extended-release tablet Ref.[10095] Active ingredients: Fostemsavir

Source: FDA, National Drug Code (US)  Revision Year: 2020 

4. Contraindications

RUKOBIA is contraindicated in patients:

  • with previous hypersensitivity to fostemsavir or any of the components of RUKOBIA.
  • coadministered strong cytochrome P450 (CYP)3A inducers, as significant decreases in temsavir (the active moiety of fostemsavir) plasma concentrations may occur which may result in loss of virologic response. These drugs include, but are not limited to [see Drug Interactions (7), Clinical Pharmacology (12.3)]:
    • Androgen receptor inhibitor: Enzalutamide
    • Anticonvulsants: Carbamazepine, phenytoin
    • Antimycobacterial: Rifampin
    • Antineoplastic: Mitotane
    • Herbal product: St John’s wort (Hypericum perforatum)

5. Warnings and Precautions

5.1 Immune Reconstitution Syndrome

Immune reconstitution syndrome has been reported in patients treated with combination antiretroviral therapy, including RUKOBIA [see Adverse Reactions (6.1)]. During the initial phase of combination antiretroviral treatment, patients whose immune systems respond may develop an inflammatory response to indolent or residual opportunistic infections (such as Mycobacterium avium infection, cytomegalovirus, Pneumocystis jirovecii pneumonia [PCP], or tuberculosis), which may necessitate further evaluation and treatment.

Autoimmune disorders (such as Graves' disease, polymyositis, Guillain-Barré syndrome, and autoimmune hepatitis) have also been reported to occur in the setting of immune reconstitution; however, the time to onset is more variable and can occur many months after initiation of treatment.

5.2 QTc Prolongation with Higher than Recommended Dosages

RUKOBIA at 2,400 mg twice daily, 4 times the recommended daily dose, has been shown to significantly prolong the QTc interval of the electrocardiogram [see Drug Interactions (7.4), Clinical Pharmacology (12.2)]. RUKOBIA should be used with caution in patients with a history of QTc interval prolongation, when coadministered with a drug with a known risk of Torsade de Pointes, or in patients with relevant pre-existing cardiac disease. Elderly patients may be more susceptible to drug-induced QT interval prolongation.

5.3 Elevations in Hepatic Transaminases in Patients with Hepatitis B or C Virus Co-infection

Monitoring of liver chemistries is recommended in patients with hepatitis B and/or C co-infection. Elevations in hepatic transaminases were observed in a greater proportion of subjects with HBV and/or HCV co-infection compared with those with HIV mono-infection. Some of these elevations in transaminases were consistent with hepatitis B reactivation, particularly in the setting where anti-hepatitis therapy was withdrawn [see Adverse Reactions (6.1)]. Particular diligence should be applied in initiating or maintaining effective hepatitis B therapy (referring to treatment guidelines) when starting RUKOBIA in patients co-infected with hepatitis B.

5.4 Risk of Adverse Reactions or Loss of Virologic Response Due to Drug Interactions

The concomitant use of RUKOBIA and certain other drugs may result in known or potentially significant drug interactions, some of which may lead to [see Contraindications (4), Warnings and Precautions (5.2), Drug Interactions (7.3), Clinical Pharmacology (12.3)]:

  • Loss of therapeutic effect of RUKOBIA and possible development of resistance due to reduced exposure of temsavir.
  • Possible prolongation of QTc interval from increased exposure to temsavir [see Drug Interactions (7.4)].

See Table 3 for steps to prevent or manage these possible and known significant drug interactions, including dosing recommendations. Consider the potential for drug interactions prior to and during therapy with RUKOBIA, review concomitant medications during therapy with RUKOBIA, and monitor for the adverse reactions associated with the concomitant drugs.

6. Adverse Reactions

The following adverse reactions are discussed in greater detail in other sections of the labeling:

  • Immune reconstitution syndrome [see Warnings and Precautions (5.1)].
  • QTc prolongation [see Warnings and Precautions (5.2)].
  • Elevations in hepatic transaminases in patients with hepatitis B or C virus co-infection [see Warnings and Precautions (5.3)].

6.1. Clinical Trials Experience

Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared with rates in the clinical trials of another drug and may not reflect the rates observed in practice.

A total of 620 subjects with HIV-1 infection received at least one dose of RUKOBIA as part of a controlled clinical trial.

The primary safety assessment of RUKOBIA is based on 96 weeks of data from a Phase 3 partially randomized, international, multicenter, double-blind, placebo-controlled trial (BRIGHTE) conducted in 371 heavily treatment-experienced adult subjects [see Clinical Studies (14)]. In the randomized cohort, 203 subjects received at least one dose of blinded RUKOBIA 600 mg twice daily and 69 subjects received placebo in addition to their current failing regimen for 8 days of functional monotherapy. Beyond Day 8, all randomized subjects except one received open-label RUKOBIA 600 mg twice daily plus an optimized background therapy (OBT). In the nonrandomized cohort, 99 subjects received open-label RUKOBIA 600 mg twice daily plus OBT from Day 1 onward.

A total of 370 subjects (271 randomized and 99 nonrandomized) received at least 1 dose of RUKOBIA 600 mg twice daily in the BRIGHTE trial. Overall, most (81%) of the adverse reactions reported with RUKOBIA were mild or moderate in severity. The proportion of subjects who discontinued treatment with RUKOBIA due to an adverse event was 7% at Week 96 (randomized: 5% and nonrandomized: 12%). The most common adverse events leading to discontinuation were related to infections (3% of subjects receiving RUKOBIA). Serious drug reactions occurred in 3% of subjects and included 3 cases of severe immune reconstitution inflammatory syndrome.

Data from the randomized cohort form the basis of the safety assessment of RUKOBIA because the presence of significant comorbid illness in the nonrandomized cohort (associated with advanced HIV infection) may confound the assessment of causality. Adverse reactions (all grades) reported in ≥2% of subjects in the randomized cohort in the Week 96 analysis are listed in Table 1.

Table 1. Adverse Reactionsa (Grades 1 to 4) Reported in ≥2% of Subjects Receiving RUKOBIA plus OBT in the BRIGHTE Trial, Randomized Cohort (Week 96 Analysis):

Adverse ReactionRUKOBIA plus OBT (n=271)
Nausea 10%
Diarrhea 4%
Headache 4%
Abdominal painc 3%
Dyspepsia 3%
Fatigued 3%
Rashe 3%
Sleep disturbancef 3%
Immune Reconstitution Inflammatory Syndrome 2%
Somnolence 2%
Vomiting 2%

a Frequencies of adverse reactions are based on all treatment-emergent adverse events attributed to study drug by the investigator.
b Of the 272 subjects enrolled in the randomized cohort, 1 subject who received placebo withdrew from the trial prior to receiving RUKOBIA in the open-label phase of the trial.
c Includes pooled terms: abdominal discomfort, abdominal pain, and abdominal pain upper.
d Includes pooled terms: fatigue and asthenia.
e Includes pooled terms: rash, rash generalized, rash maculo-papular, rash pruritic, and dermatitis allergic.
f Includes pooled terms: insomnia, sleep deficit, sleep disorder, abnormal dreams.

Adverse reactions in the nonrandomized cohort were similar to those observed in the randomized cohort. The most common adverse reactions reported in nonrandomized subjects were fatigue (7%), nausea (6%), and diarrhea (6%).

Less Common Adverse Reactions

The following adverse reactions occurred in <2% of subjects receiving RUKOBIA in the randomized cohort of the BRIGHTE trial. These events have been included based on the assessment of potential causal relationship and were also reported in the nonrandomized cohort.

Cardiac Disorders: Electrocardiogram QT prolonged. All reports were asymptomatic.

Musculoskeletal Disorders: Myalgia.

Nervous System Disorders: Dizziness, dysgeusia, neuropathy peripheral (includes pooled terms: neuropathy peripheral and peripheral sensory neuropathy).

Skin and Subcutaneous Tissue Disorders: Pruritus.

Laboratory Abnormalities

Selected laboratory abnormalities (Grades 3 to 4) with a worsening grade from baseline and representing the worst-grade toxicity in ≥2% of subjects in the randomized cohort of the BRIGHTE trial are presented in Table 2.

Table 2. Selected Laboratory Abnormalities (Grades 3 to 4) Reported in ≥2% of Subjects in the Randomized Cohort Receiving RUKOBIA plus OBT in the BRIGHTE Trial (Week 96 Analysis):

Laboratory Parameter Preferred TermRUKOBIA plus OBT (n=271a)
ALT (>5.0 x ULN) 5%
AST (>5.0 x ULN) 4%
Direct bilirubin (>ULN)b 7%
Bilirubin (≥2.6 x ULN) 3%
Cholesterol (≥300 mg/dL)b 5%
Creatinine (>1.8 x ULN or 1.5 x baseline) 19%
Creatine kinase (≥10 x ULN) 2%
Hemoglobin (<9.0 g/dL) 6%
Hyperglycemia (>250 mg/dL) 4%
Lipase (>3.0 x ULN) 5%
LDL cholesterol (≥190 mg/dL) 4%
Neutrophils (≤599 cells/mm³) 4%
Triglycerides (>500 mg/dL) 5%
Urate (>12 mg/dL) 3%

ULN = Upper limit of normal.
a Percentages were calculated based on the number of subjects with post-baseline toxicity grades for each laboratory parameter (n=221 for cholesterol and triglycerides, n=216 for LDL cholesterol, and n=268 for all other parameters).
b Grade 3 only (no Grade 4 values reported).

The incidence of selected laboratory abnormalities (Grades 3 to 4) in the nonrandomized cohort were overall consistent with those of the randomized cohort, with the exception of direct bilirubin (14% versus 7%), bilirubin (6% versus 3%), lipase (10% versus 5%), triglycerides (10% versus 5%), neutrophils (7% versus 4%), and leukocytes (6% versus 1%), respectively.

Changes in Serum Creatinine

Clinically relevant increases in serum creatinine have primarily occurred in patients with identifiable risk factors for reduced renal function, including pre-existing medical history of renal disease and/or concomitant medications known to cause increases in creatinine. A causal association between RUKOBIA and elevation in serum creatinine has not been established.

Changes in Direct Bilirubin

Increases in direct (conjugated) bilirubin have been observed following treatment with RUKOBIA (Table 2). Cases of clinical significance were uncommon and were confounded by the presence of intercurrent serious comorbid events (e.g., sepsis, cholangiocarcinoma, or other complications of viral hepatitis co-infection). In the remaining cases, elevations in direct bilirubin (without clinical jaundice) were typically transient, occurred without increases in liver transaminases, and resolved on continued RUKOBIA.

Changes in ALT and AST in Subjects with Hepatitis B and/or Hepatitis C Virus Co-infection

A total of 29 subjects with Hepatitis B and/or Hepatitis C co-infection were enrolled in the BRIGHTE trial (randomized and nonrandomized cohorts combined). Grade 3 and 4 elevations in ALT and AST occurred in 14% of these subjects compared with 3% (ALT) and 2% (AST) of subjects without viral hepatitis co-infection. Some of these elevations in transaminases were consistent with hepatitis B reactivation particularly in the setting where anti-hepatitis therapy was withdrawn [see Warnings and Precautions (5.3)].

7. Drug Interactions

7.1 Potential for RUKOBIA to Affect Other Drugs

Temsavir may increase plasma concentrations of grazoprevir or voxilaprevir to a clinically relevant extent due to organic anion transporting polypeptide (OATP)1B1/3 inhibition [see Drug Interactions (7.3)].

When RUKOBIA was coadministered with oral contraceptives, temsavir increased concentrations of ethinyl estradiol (Table 3) [see Drug Interactions (7.3), Clinical Pharmacology (12.3)].

7.2 Potential for Other Drugs to Affect RUKOBIA

Coadministration of RUKOBIA with rifampin, a strong CYP3A4 inducer, significantly decreases temsavir plasma concentrations. The use of RUKOBIA with drugs that are strong inducers of CYP3A4 can significantly decrease temsavir plasma concentrations which may lead to loss of virologic response [see Contraindications (4), Drug Interactions (7.3), Clinical Pharmacology (12.3)].

7.3 Established and Other Potentially Significant Drug Interactions

Information regarding potential drug interactions with RUKOBIA is provided in Table 3. These recommendations are based on either drug interaction trials or predicted interactions due to the expected magnitude of interaction and potential for serious adverse events or loss of efficacy [see Contraindications (4), Warnings and Precautions (5.4), Clinical Pharmacology (12.3)].

Table 3. Established and Other Potentially Significant Drug Interactionsa:

Concomitant Drug Class:
Drug Name
Effect on Concentration of Temsavir and/or Concomitant DrugClinical Comment
Androgen receptor inhibitor: Enzalutamide ↓Temsavir Coadministration is contraindicated due to potential for loss of therapeutic effect to RUKOBIA [see Contraindications (4)].
Anticonvulsants: Carbamazepine
Phenytoin
↓Temsavir
Antimycobacterial: Rifampin b ↓Temsavir
Antineoplastic: Mitotane ↓Temsavir
Herbal product:
St John’s wort (Hypericum perforatum)
↓Temsavir
Hepatitis C virus direct-acting antivirals:
Grazoprevir
Voxilaprevir
↑Grazoprevir
↑Voxilaprevir
Coadministration may increase exposures of grazoprevir or voxilaprevir; however, the magnitude of increase in exposure is unknown. Increased exposures of grazoprevir may increase the risk of ALT elevations. Use an alternative HCV regimen if possible.
Oral contraceptive: Ethinyl estradiolb ↑Ethinyl estradiol Ethinyl estradiol daily dose should not exceed 30 mcg. Caution is advised particularly in patients with additional risk factors for thromboembolic events.
Statins:
Rosuvastatinb
Atorvastatin
Fluvastatin
Pitavastatin
Simvastatin
↑Rosuvastatin
↑Atorvastatin
↑Fluvastatin
↑Pitavastatin
↑Simvastatin
Use the lowest possible starting dose for statins and monitor for statin-associated adverse events.

↑ = Increase, ↓ = Decrease.
a This table is not all inclusive.
b See Clinical Pharmacology (12.3) for magnitude of interaction.

7.4 Drugs that Prolong QT Interval

Coadministration of RUKOBIA with a drug with a known risk of Torsade de Pointes may increase the risk of Torsade de Pointes [see Warnings and Precautions (5.2), Clinical Pharmacology (12.2)]. Use RUKOBIA with caution when coadministered with drugs with a known risk of Torsade de Pointes.

7.5 Drugs without Clinically Significant Interactions with RUKOBIA

Based on drug interaction study results, the following drugs can be coadministered with RUKOBIA without a dose adjustment: atazanavir/ritonavir, buprenorphine/naloxone, cobicistat, darunavir/cobicistat, darunavir/ritonavir with and without etravirine, etravirine, famotidine, maraviroc, methadone, norethindrone, raltegravir, ritonavir, rifabutin with and without ritonavir, tenofovir disoproxil fumarate [see Clinical Pharmacology (12.3)].

8.1. Pregnancy

Pregnancy Exposure Registry

There is a pregnancy exposure registry that monitors pregnancy outcomes in individuals exposed to RUKOBIA during pregnancy. Healthcare providers are encouraged to register patients by calling the Antiretroviral Pregnancy Registry (APR) at 1-800-258-4263.

Risk Summary

There are insufficient human data on the use of RUKOBIA during pregnancy to adequately assess a drug-associated risk of birth defects and miscarriage. In animal reproduction studies, oral administration of fostemsavir to pregnant rats and rabbits during organogenesis resulted in no adverse developmental effects at clinically relevant temsavir exposures (see Data).

The background risk for major birth defects and miscarriage for the indicated population is unknown. The background rate for major birth defects in a U.S. reference population of the Metropolitan Atlanta Congenital Defects Program (MACDP) is 2.7%. The estimated background rate of miscarriage in clinically recognized pregnancies in the U.S. general population is 15% to 20%.

Data

Animal Data

Fostemsavir was administered orally to pregnant rats (50, 200, 600 mg/kg/day) and rabbits (25, 50, or 100 mg/kg/day) during Gestation Days 6 to 15 (rat) and 7 to 19 (rabbit). No fetal abnormalities were observed at temsavir exposures of approximately 180 (rat) and 30 (rabbit) times those in humans at the maximum recommended human dose (MRHD). In rabbits, increased embryonic death associated with maternal toxicity was observed at temsavir exposures approximately 60 times those in humans at the MRHD. In a separate rat study conducted at drug exposures approximately 200 times those in humans at the MRHD, fetal abnormalities (cleft palate, open eyes, shortened snout, microstomia, misaligned mouth/jaw, and protruding tongue) and reductions in fetal body weights occurred in the presence of maternal toxicity.

In a rat pre- and postnatal development study, fostemsavir was administered orally at doses of 10, 50, or 300 mg/kg/day from Gestation Day 6 through Lactation Day 20. Reduced neonatal survival (7 to 14 days after birth) in the absence of other adverse fetal or neonatal effects was observed at maternal temsavir exposures approximately 130 times those in humans at the MRHD. No adverse fetal or neonatal effects were observed at maternal temsavir exposures approximately 35 times those in humans at the MRHD.

In a distribution study in pregnant rats, fostemsavir-related drug materials (i.e., temsavir and/or temsavir-derived metabolites) crossed the placenta and were detectable in fetal tissue.

8.2. Lactation

Risk Summary

The Centers for Disease Control and Prevention recommends that HIV‑1–infected mothers in the United States not breastfeed their infants to avoid risking postnatal transmission of HIV-1 infection.

It is not known whether RUKOBIA is present in human breast milk, affects human milk production, or has effects on the breastfed infant. When administered to lactating rats, fostemsavir-related drug was present in rat milk (see Data).

Because of the potential for (1) HIV-1 transmission (in HIV-negative infants), (2) developing viral resistance (in HIV-positive infants), and (3) adverse reactions in a breastfed infant similar to those seen in adults, instruct mothers not to breastfeed if they are receiving RUKOBIA.

Data

In a distribution study, fostemsavir-related drug materials (i.e., temsavir and/or temsavir-derived metabolites) were excreted in rat milk following a single dose of fostemsavir administered to lactating rats 7 to 9 days postpartum. In the pre- and postnatal development study in rats, temsavir was present in milk at concentrations similar to those measured in maternal plasma, as determined 11 days postpartum. In addition, lactational exposure was associated with reduced offspring survival at maternal temsavir exposures not thought to be clinically relevant.

8.4. Pediatric Use

The safety and effectiveness of RUKOBIA have not been established in pediatric patients.

8.5. Geriatric Use

Clinical trials of RUKOBIA did not include sufficient numbers of subjects aged 65 and older to determine whether they respond differently from younger subjects. In general, caution should be exercised in administration of RUKOBIA in elderly patients reflecting greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy [see Clinical Pharmacology (12.3)]. Elderly patients may be more susceptible to drug-induced QT interval prolongation [see Warnings and Precautions (5.2)].

8.6. Renal Impairment

No dosage adjustment is required for patients with renal impairment or those on hemodialysis [see Clinical Pharmacology (12.3)].

8.7. Hepatic Impairment

No dosage adjustment is required in patients with mild to severe hepatic impairment (Child-Pugh Score A, B, or C) [see Clinical Pharmacology (12.3)].

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.