Source: European Medicines Agency (EU) Revision Year: 2020 Publisher: Mylan S.A.S., 117 Allée des Parcs, 69800 Saint-Priest, France
Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.
Acute myocardial infarction within the last 90 days.
Severe hypotension (<90/50 mmHg).
In clinical studies, tadalafil was shown to augment the hypotensive effects of nitrates. This is thought to result from the combined effects of nitrates and tadalafil on the nitric oxide/cGMP pathway. Therefore, administration of tadalafil to patients who are using any form of organic nitrate is contraindicated (see section 4.5).
The co-administration of PDE5 inhibitors, including tadalafil, with guanylate cyclase stimulators, such as riociguat, is contraindicated as it may potentially lead to symptomatic hypotension (see section 4.5).
Patients who have loss of vision in one eye because of non-arteritic anterior ischemic optic neuropathy (NAION), regardless of whether this episode was in connection or not with previous PDE5 inhibitor exposure (see section 4.4).
The following groups of patients with cardiovascular disease were not included in PAH clinical studies:
Since there are no clinical data on the safety of tadalafil in these patients, the use of tadalafil is not recommended.
Pulmonary vasodilators may significantly worsen the cardiovascular status of patients with pulmonary veno-occlusive disease (PVOD). Since there are no clinical data on administration of tadalafil to patients with veno-occlusive disease, administration of tadalafil to such patients is not recommended. Should signs of pulmonary oedema occur when tadalafil is administered, the possibility of associated PVOD should be considered.
Tadalafil has systemic vasodilatory properties that may result in transient decreases in blood pressure. Physicians should carefully consider whether their patients with certain underlying conditions, such as severe left ventricular outflow obstruction, fluid depletion, autonomic hypotension or patients with resting hypotension, could be adversely affected by such vasodilatory effects.
In patients who are taking alpha1 blockers concomitant administration of tadalafil may lead to symptomatic hypotension in some patients (see section 4.5). Therefore, the combination of tadalafil and doxazosin is not recommended.
Visual defects and cases of NAION have been reported in connection with the intake of tadalafil and other PDE5 inhibitors. Analyses of observational data suggest an increased risk of acute NAION in men with erectile dysfunction following exposure to tadalafil or other PDE5 inhibitors. As this may be relevant for all patients exposed to tadalafil, the patient should be advised that in case of sudden visual defect, he should stop taking tadalafil and consult a physician immediately (see section 4.3). Patients with known hereditary degenerative retinal disorders, including retinitis pigmentosa, were not included in the clinical studies, and use in these patients is not recommended.
Cases of sudden hearing loss have been reported after the use of tadalafil. Although other risk factors were present in some cases (such as age, diabetes, hypertension, previous hearing loss history and associated connective tissue diseases) patients should be advised to seek prompt medical attention in the event of sudden decrease or loss of hearing.
Due to increased tadalafil exposure (AUC), limited clinical experience, and the lack of ability to influence clearance by dialysis, tadalafil is not recommended in patients with severe renal impairment. Patients with severe hepatic cirrhosis (Child-Pugh Class C) have not been studied and, therefore, dosing of tadalafil is not recommended.
Priapism has been reported in men treated with PDE5 inhibitors. Patients who experience erections lasting 4 hours or more should be instructed to seek immediate medical assistance. If priapism is not treated immediately, penile tissue damage and permanent loss of potency may result.
Tadalafil should be used with caution in patients with anatomical deformation of the penis (such as angulation, cavernosal fibrosis or Peyronie’s disease), or in patients who have conditions which may predispose them to priapism (such as sickle cell anaemia, multiple myeloma or leukaemia).
For patients chronically taking potent inducers of CYP3A4, such as rifampicin, the use of tadalafil is not recommended (see section 4.5).
For patients taking concomitant potent inhibitors of CYP3A4, such as ketoconazole or ritonavir, the use of tadalafil is not recommended (see section 4.5).
The safety and efficacy of combinations of tadalafil and other PDE5 inhibitors or other treatments for erectile dysfunction have not been studied. Patients should be informed not to take tadalafil with these medicinal products.
The efficacy and safety of tadalafil co-administered with prostacyclin or its analogues has not been studied in controlled clinical studies. Therefore, caution is recommended in case of co-administration.
The efficacy of tadalafil in patients already on bosentan therapy has not been conclusively demonstrated (see sections 4.5 and 5.1).
Talmanco tablets contain lactose. Patients with rare hereditary problems of galactose intolerance, total lactase deficiency or glucose-galactose malabsorption should not take this medicine. This medicine contains less than 1 mmol sodium (23 mg) per tablet, that is to say essentially ‘sodiumfree’.
Ketoconazole (200 mg daily), increased tadalafil (10 mg) single dose exposure (AUC) 2-fold and Cmax by 15%, relative to the AUC and Cmax values for tadalafil alone. Ketoconazole (400 mg daily) increased tadalafil (20 mg) single dose exposure (AUC) 4-fold and Cmax by 22%.
Ritonavir (200 mg twice daily), which is an inhibitor of CYP3A4, CYP2C9, CYP2C19, and CYP2D6, increased tadalafil (20 mg) single dose exposure (AUC) 2-fold with no change in Cmax. Ritonavir (500 mg or 600 mg twice daily) increased tadalafil (20 mg) single-dose exposure (AUC) by 32% and decreased Cmax by 30%.
Bosentan (125 mg twice daily), a substrate of CYP2C9 and CYP3A4 and a moderate inducer of CYP3A4, CYP2C9 and possibly CYP2C19, reduced tadalafil (40 mg once per day) systemic exposure by 42% and Cmax by 27% following multiple dose co-administration. The efficacy of tadalafil in patients already on bosentan therapy has not been conclusively demonstrated (see sections 4.4 and 5.1). Tadalafil did not affect the exposure (AUC and Cmax) of bosentan or its metabolites.
The safety and efficacy of combinations of tadalafil and other endothelin-1 receptor antagonists have not been studied.
A CYP3A4 inducer, rifampicin (600 mg daily), reduced tadalafil AUC by 88% and Cmax by 46%, relative to the AUC and Cmax values for tadalafil alone (10 mg).
In clinical studies, tadalafil (5, 10 and 20 mg) was shown to augment the hypotensive effects of nitrates. This interaction lasted for more than 24 hours and was no longer detectable when 48 hours had elapsed after the last tadalafil dose. Therefore, administration of tadalafil to patients who are using any form of organic nitrate is contraindicated (see section 4.3).
The co-administration of doxazosin (4 and 8 mg daily) and tadalafil (5 mg daily dose and 20 mg as a single dose) increases the blood pressure-lowering effect of this alpha-blocker in a significant manner. This effect lasts at least twelve hours and may be symptomatic, including syncope. Therefore, this combination is not recommended (see section 4.4).
In interaction studies performed in a limited number of healthy volunteers, these effects were not reported with alfuzosin or tamsulosin.
In clinical pharmacology studies, the potential for tadalafil (10 and 20 mg) to augment the hypotensive effects of antihypertensive medicinal products was examined. Major classes of antihypertensive medicinal products were studied either as monotherapy or as part of combination therapy. In patients taking multiple antihypertensive medicinal products whose hypertension was not well controlled, greater reductions in blood pressure were observed compared to patients whose blood pressure was well controlled, where the reduction was minimal and similar to that in healthy subjects. In patients receiving concomitant antihypertensive medicinal products, tadalafil 20 mg may induce a blood pressure decrease, which (with the exception of doxazosin -see above) is, in general, minor and not likely to be clinically relevant.
Preclinical studies showed an additive systemic blood pressure lowering effect when PDE5 inhibitors were combined with riociguat. In clinical studies, riociguat has been shown to augment the hypotensive effects of PDE5 inhibitors. There was no evidence of favourable clinical effect of the combination in the population studied. Concomitant use of riociguat with PDE5 inhibitors, including tadalafil, is contraindicated (see section 4.3).
Alcohol concentrations were not affected by co-administration with tadalafil (10 mg or 20 mg). In addition, no changes in tadalafil concentrations were seen after co-administration with alcohol. Tadalafil (20 mg) did not augment the mean blood pressure decrease produced by alcohol (0.7 g/kg or approximately 180 ml of 40% alcohol [vodka] in an 80 kg male), but in some subjects, postural dizziness and orthostatic hypotension were observed. The effect of alcohol on cognitive function was not augmented by tadalafil (10 mg).
When tadalafil 10 mg was administered with theophylline (a non-selective phosphodiesterase inhibitor) there was no pharmacokinetic interaction. The only pharmacodynamic effect was a small (3.5 bpm) increase in heart rate.
Tadalafil (10 mg and 20 mg) had no clinically significant effect on exposure (AUC) to S-warfarin or R-warfarin (CYP2C9 substrate), nor did tadalafil affect changes in prothrombin time induced by warfarin.
Tadalafil (10 mg and 20 mg) did not potentiate the increase in bleeding time caused by acetyl salicylic acid.
Tadalafil (40 mg once per day) had no clinically significant effect on the pharmacokinetics of digoxin.
At steady-state, tadalafil (40 mg once per day) increased ethinylestradiol exposure (AUC) by 26% and Cmax by 70% relative to oral contraceptive administered with placebo. There was no statistically significant effect of tadalafil on levonorgestrel which suggests the effect of ethinylestradiol is due to inhibition of gut sulphation by tadalafil. The clinical relevance of this finding is uncertain.
A similar increase in AUC and Cmax seen with ethinylestradiol may be expected with oral administration of terbutaline, probably due to inhibition of gut sulphation by tadalafil. The clinical relevance of this finding is uncertain.
There are limited data from the use of tadalafil in pregnant women. Animal studies do not indicate direct or indirect harmful effects with respect to pregnancy, embryonal/foetal development, parturition or postnatal development (see section 5.3). As a precautionary measure, it is preferable to avoid the use of tadalafil during pregnancy.
Available pharmacodynamic/toxicological data in animals have shown excretion of tadalafil in milk. A risk to the breast-fed child cannot be excluded. Tadalafil should not be used during breast-feeding.
Effects were seen in dogs that might indicate impairment of fertility. Two subsequent clinical studies suggest that this effect is unlikely in humans, although a decrease in sperm concentration was seen in some men (see sections 5.1 and 5.3).
Tadalafil has negligible influence on the ability to drive or use machines. Although the frequency of reports of dizziness in placebo and tadalafil arms in clinical studies was similar, patients should be aware of how they react to tadalafil, before driving or operating machinery.
The most commonly reported adverse reactions, occurring in ≥ 10% of patients in the tadalafil 40 mg treatment arm, were headache, nausea, back pain, dyspepsia, flushing, myalgia, nasopharingitis and pain in extremity. The adverse reactions reported were transient, and generally mild or moderate. Adverse reaction data are limited in patients over 75 years of age.
In the pivotal placebo-controlled study of tadalafil for the treatment of PAH, a total of 323 patients were treated with tadalafil at doses ranging from 2.5 mg to 40 mg once daily and 82 patients were treated with placebo. The duration of treatment was 16 weeks. The overall frequency of discontinuation due to adverse events was low (tadalafil 11%, placebo 16%). Three hundred and fifty seven (357) patients who completed the pivotal study entered a long-term extension study. Doses studied were 20 mg and 40 mg once daily.
The table below lists the adverse reactions reported during the placebo-controlled clinical study in patients with PAH treated with tadalafil. Also included in the table are some adverse reactions which have been reported in clinical studies and/or post marketing with tadalafil in the treatment of male erectile dysfunction. These events have either been assigned a frequency of “Not known,” as the frequency in PAH patients cannot be estimated from the available data or assigned a frequency based on the clinical study data from the pivotal placebo-controlled study of tadalafil.
Frequency estimate: Very common (≥1/10), common (≥1/100 to <1/10), uncommon (≥1/1,000 to <1/100), rare (≥1/10,000 to <1/1,000), very rare (<1/10,000) and not known (cannot be estimated from the available data).
Very common | Common | Uncommon | Rare | Not known1 |
---|---|---|---|---|
Immune system disorders | ||||
Hypersensitivity reactions5 | Angioedema | |||
Nervous system disorders | ||||
Headache6 | Syncope, Migraine5 | Seizures5, Transient amnesia5 | Stroke2 (including haemorrhagic events) | |
Eye disorders | ||||
Blurred vision | Non-arteritic anterior ischemic optic neuropathy (NAION), Retinal vascular occlusion, Visual field defect | |||
Ear and labyrinth disorders | ||||
Tinnitus | Sudden hearing loss | |||
Cardiac disorders | ||||
Palpitations2,5 | Sudden cardiac death2,5, Tachycardia2,5 | Unstable angina pectoris, Ventricular arrhythmia, Myocardial Infarction2 | ||
Vascular disorders | ||||
Flushing | Hypotension | Hypertension | ||
Respiratory, thoracic and mediastinal disorders | ||||
Nasopharyngitis (including nasal congestion, sinus congestion and rhinitis) | Epistaxis | |||
Gastrointestinal disorders | ||||
Nausea, Dyspepsia (including abdominal pain/discomfort3) | Vomiting, Gastroesophageal reflux | |||
Skin and subcutaneous tissue disorders | ||||
Rash | Urticaria5, Hyperhydrosis (sweating)5 | Stevens-Johnson Syndrome, Exfoliative dermatitis | ||
Musculoskeletal and connective tissue disorders | ||||
Myalgia, Back pain, Pain in extremity (including limb discomfort) | ||||
Renal and urinary disorders | ||||
Haematuria | ||||
Reproductive system and breast disorders | ||||
Increased uterine bleeding4 | Priapism5, Penile haemorrhage, Haematospermia | Prolonged erections | ||
General disorders and administration site conditions | ||||
Facial oedema, Chest pain2 |
1 Events not reported in registration studies and cannot be estimated from the available data. The adverse reactions have been included in the table as a result of postmarketing or clinical study data from the use of tadalafil in the treatment of erectile dysfunction.
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.
Not applicable.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.