Source: Medicines & Healthcare Products Regulatory Agency (GB) Revision Year: 2018 Publisher: Santen Oy, Niittyhaankatu 20, 33720, Tampere, Finland
Pharmacotherapeutic group: Ophthalmologicals, antiglaucoma preparations and miotics, betablocking agents
ATC code: S01ED01
Timolol maleate is a non-selective beta-adrenergic receptor blocking agent that does not have significant intrinsic sympathomimetic, direct myocardial depressant, or local anaesthetic activity. Timolol maleate combines reversibly with the beta-adrenergic receptor, and this inhibits the usual biologic response that would occur with stimulation of that receptor. This specific competitive antagonism blocks stimulation of the beta-adrenergic stimulating (agonist) activity, whether these originate from an endogenous or exogenous source. Reversal of this blockade can be accomplished by increasing the concentration of the agonist which will restore the usual biological response.
Unlike miotics, Timoptol reduces IOP with little or no effect on accommodation or pupil size. In patients with cataracts, the inability to see around lenticular opacities when the pupil is constricted is avoided. When changing patients from miotics to Timoptol a refraction might be necessary when the effects of the miotic have passed.
Diminished response after prolonged therapy with Timoptol has been reported in some patients.
There is only very limited data available on the use of timolol (0.25%, 0.5% twice daily one drop) in the paediatric population. In one small, double masked, randomized, published clinical study conducted for a treatment period up to 12 weeks on 105 children (n=71 on timolol) aged 12 days – 5 years the data have shown to some extent evidence, that timolol in the indication primary congenital and primary juvenile glaucoma is effective in short term treatment.
The onset of reduction in intra-ocular pressure can be detected within one-half hour after a single dose. The maximum effect occurs in one or two hours; significant lowering of IOP can be maintained for as long as 24 hours with a single dose.
As already confirmed by adult data, 80% of each eye drop passes through the nasolacrimal system where it may be rapidly absorbed into the systemic circulation via the nasal mucosa, conjunctiva, nasolacrimal duct, oropharynx and gut, or the skin from tear overflow.
Due to the fact that the blood volume in children is smaller than that in adults a higher circulation concentration has to be taken into account. In addition, neonates have immature metabolic enzyme pathways and it may result in an increase in elimination half-life and potentiating adverse events.
Limited data show that plasma timolol levels in children after 0.25% greatly exceed those in adults after 0.5%, especially in infants and are presumed to increase the risk of side effects such as bronchospasm and bradycardia.
No adverse ocular effects were observed in rabbits and dogs administered Timoptol topically in studies lasting one and two years, respectively. The oral LD50 of the drug is 1,190 and 900 mg/kg in female mice and female rats, respectively.
In a two-year oral study of timolol maleate in rats there was a statistically significant (p≤0.05) increase in the incidence of adrenal phaeochromocytomas in male rats administered 300 mg/kg/day (300 times the maximum recommended human oral dose). Similar differences were not observed in rats administered oral doses equivalent to 25 or 100 times the maximum recommended human oral dose.
In a lifetime oral study in mice, there were statistically significant (p≤0.05) increases in the incidence of benign and malignant pulmonary tumours, benign uterine polyps and mammary adenocarcinoma in female mice at 500 mg/kg/day (500 times the maximum recommended human dose), but not at 5 or 50 mg/kg/day. In a subsequent study in female mice, in which post-mortem examinations were limited to uterus and lungs, a statistically significant increase in the incidence of pulmonary tumours was again observed at 500 mg/kg/day.
The increased occurrence of mammary adenocarcinoma was associated with elevations in serum prolactin which occurred in female mice administered timolol at 500 mg/kg/day, but not at doses of 5 or 50 mg/kg/day. An increased incidence of mammary adenocarcinomas in rodents has been associated with administration of several other therapeutic agents which elevate serum prolactin, but no correlation between serum prolactin levels and mammary tumours has been established in man. Furthermore, in adult human female subjects who received oral dosages of up to 60 mg of timolol maleate, the maximum recommended human oral dosage, there were no clinically meaningful changes in serum prolactin.
Timolol maleate was devoid of mutagenic potential when evaluated in vivo (mouse) in the micronucleus test and cytogenetic assay (doses up to 800 mg/kg) and in vitro in a neoplastic cell transformation assay (up to 100 mcg/ml). In Ames tests the highest concentrations of timolol employed, 5,000 or 10,000 mcg/plate, were associated with statistically significant (p≤0.05) elevations of revertants observed with tester strain TA100 (in seven replicate assays) but not in the remaining three strains. In the assays with tester strain TA100, no consistent dose-response relationship was observed, nor did the ratio of test to control revertants reach 2. A ratio of 2 is usually considered the criterion for a positive Ames test.
Reproduction and fertility studies in rats showed no adverse effect on male or female fertility at doses up to 150 times the maximum recommended human oral dose.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.