Source: European Medicines Agency (EU) Revision Year: 2018 Publisher: Boehringer Ingelheim International GmbH, Binger Str. 173, D-55216 Ingelheim am Rhein, Germany
Hypersensitivity to the active substance or to any of the excipients listed in section 6.1.
Linagliptin should not be used in patients with type 1 diabetes or for the treatment of diabetic ketoacidosis.
Linagliptin alone showed a comparable incidence of hypoglycaemia to placebo. In clinical trials of linagliptin as part of combination therapy with medicinal products not known to cause hypoglycaemia (metformin), rates of hypoglycaemia reported with linagliptin were similar to rates in patients taking placebo.
When linagliptin was added to a sulphonylurea (on a background of metformin), the incidence of hypoglycaemia was increased over that of placebo (see section 4.8).
Sulphonylureas and insulin are known to cause hypoglycaemia. Therefore, caution is advised when linagliptin is used in combination with a sulphonylurea and/or insulin. A dose reduction of the sulphonylurea or insulin may be considered (see section 4.2).
Use of DPP-4 inhibitors has been associated with a risk of developing acute pancreatitis. In post-marketing experience of linagliptin there have been spontaneously reported adverse reactions of acute pancreatitis. Patients should be informed of the characteristic symptoms of acute pancreatitis. If pancreatitis is suspected, Trajenta should be discontinued; if acute pancreatitis is confirmed, Trajenta should not be restarted. Caution should be exercised in patients with a history of pancreatitis.
There have been post-marketing reports of bullous pemphigoid in patients taking linagliptin. If bullous pemphigoid is suspected, Trajenta should be discontinued.
Linagliptin is a weak competitive and a weak to moderate mechanism-based inhibitor of CYP isozyme CYP3A4, but does not inhibit other CYP isozymes. It is not an inducer of CYP isozymes. Linagliptin is a P-glycoprotein substrate, and inhibits P-glycoprotein mediated transport of digoxin with low potency. Based on these results and in vivo interaction studies, linagliptin is considered unlikely to cause interactions with other P-gp substrates.
Clinical data described below suggest that the risk for clinically meaningful interactions by co-administered medicinal products is low.
Rifampicin: multiple co-administration of 5 mg linagliptin with rifampicin, a potent inductor of P-glycoprotein and CYP3A4, resulted in a 39.6% and 43.8% decreased linagliptin steady-state AUC and Cmax, respectively, and about 30% decreased DPP-4 inhibition at trough. Thus, full efficacy of linagliptin in combination with strong P-gp inducers might not be achieved, particularly if these are administered long-term. Co-administration with other potent inducers of P-glycoprotein and CYP3A4, such as carbamazepine, phenobarbital and phenytoin has not been studied.
Ritonavir: co-administration of a single 5 mg oral dose of linagliptin and multiple 200 mg oral doses of ritonavir, a potent inhibitor of P-glycoprotein and CYP3A4, increased the AUC and Cmax of linagliptin approximately twofold and threefold, respectively. The unbound concentrations, which are usually less than 1% at the therapeutic dose of linagliptin, were increased 4-5-fold after co-administration with ritonavir. Simulations of steady-state plasma concentrations of linagliptin with and without ritonavir indicated that the increase in exposure will be not associated with an increased accumulation. These changes in linagliptin pharmacokinetics were not considered to be clinically relevant. Therefore, clinically relevant interactions would not be expected with other P-glycoprotein/CYP3A4 inhibitors.
Metformin: co-administration of multiple three times daily doses of 850 mg metformin with 10 mg linagliptin once daily did not clinical meaningfully alter the pharmacokinetics of linagliptin in healthy volunteers.
Sulphonylureas: the steady-state pharmacokinetics of 5 mg linagliptin was not changed by concomitant administration of a single 1.75 mg dose glibenclamide (glyburide).
In clinical studies, as described below, linagliptin had no clinically relevant effect on the pharmacokinetics of metformin, glyburide, simvastatin, warfarin, digoxin or oral contraceptives providing in vivo evidence of a low propensity for causing medicinal product interactions with substrates of CYP3A4, CYP2C9, CYP2C8, P-glycoprotein, and organic cationic transporter (OCT).
Metformin: co-administration of multiple daily doses of 10 mg linagliptin with 850 mg metformin, an OCT substrate, had no relevant effect on the pharmacokinetics of metformin in healthy volunteers. Therefore, linagliptin is not an inhibitor of OCT-mediated transport.
Sulphonylureas: co-administration of multiple oral doses of 5 mg linagliptin and a single oral dose of 1.75 mg glibenclamide (glyburide) resulted in clinically not relevant reduction of 14% of both AUC and Cmax of glibenclamide. Because glibenclamide is primarily metabolised by CYP2C9, these data also support the conclusion that linagliptin is not a CYP2C9 inhibitor. Clinically meaningful interactions would not be expected with other sulphonylureas (e.g. glipizide, tolbutamide, and glimepiride) which, like glibenclamide, are primarily eliminated by CYP2C9.
Digoxin: co-administration of multiple daily doses of 5 mg linagliptin with multiple doses of 0.25 mg digoxin had no effect on the pharmacokinetics of digoxin in healthy volunteers. Therefore, linagliptin is not an inhibitor of P-glycoprotein-mediated transport in vivo.
Warfarin: multiple daily doses of 5 mg linagliptin did not alter the pharmacokinetics of S(-) or R(+) warfarin, a CYP2C9 substrate, administered in a single dose.
Simvastatin: multiple daily doses of linagliptin had a minimal effect on the steady-state pharmacokinetics of simvastatin, a sensitive CYP3A4 substrate, in healthy volunteers. Following administration of a supratherapeutic dose of 10 mg linagliptin concomitantly with 40 mg of simvastatin daily for 6 days, the plasma AUC of simvastatin was increased by 34%, and the plasma Cmax by 10%.
Oral contraceptives: co-administration with 5 mg linagliptin did not alter the steady-state pharmacokinetics of levonorgestrel or ethinylestradiol.
The use of linagliptin has not been studied in pregnant women. Animal studies do not indicate direct or indirect harmful effects with respect to reproductive toxicity (see section 5.3). As a precautionary measure, it is preferable to avoid the use of linagliptin during pregnancy.
Available pharmacokinetic data in animals have shown excretion of linagliptin/metabolites in milk. A risk to the breast-fed child cannot be excluded. A decision must be made whether to discontinue breast-feeding or to discontinue/abstain from linagliptin therapy taking into account the benefit of breast-feeding for the child and the benefit of therapy for the woman.
No studies on the effect on human fertility have been conducted for linagliptin. Animal studies do not indicate direct or indirect harmful effects with respect to fertility (see section 5.3).
Linagliptin has no or negligible influence on the ability to drive and use machines. However patients should be alerted to the risk of hypoglycaemia especially when combined with sulphonylurea and/or insulin.
In the pooled analysis of the placebo-controlled trials, the overall incidence of adverse events in patients treated with placebo was similar to linagliptin 5 mg (63.4% versus 59.1%). Discontinuation of therapy due to adverse events was higher in patients who received placebo as compared to linagliptin 5 mg (4.3% versus 3.4%).
The most frequently reported adverse reaction was “hypoglycaemia” observed under the triple combination, linagliptin plus metformin plus sulphonylurea 14.8% versus 7.6% in placebo.
In the placebo-controlled studies 4.9% of patients experienced “hypoglycaemia” as an adverse reaction under linagliptin. Of these, 4.0% were mild and 0.9% were moderate and 0.1% were classified as severe. Pancreatitis was reported more often in patients randomized to linagliptin (7 events in 6,580 patients receiving linagliptin versus 2 events in 4,383 patients receiving placebo).
Due to the impact of the background therapy on adverse reactions (e.g. on hypoglycaemias), adverse reactions were analysed and displayed based on the respective treatment regimens (monotherapy, add- on to metformin, add-on to meformin plus sulphonylurea, and add-on to insulin).
The placebo-controlled studies included studies where linagliptin was given as:
Adverse reactions classified by system organ class and MedDRA preferred terms reported in patients who received 5 mg linagliptin in double-blind studies as monotherapy or as add-on therapy are presented per treatment regimen in the table below (see table 1).
The adverse reactions are listed by absolute frequency. Frequencies are defined as very common (≥1/10), common (≥1/100 to <1/10), uncommon (≥1/1,000 to <1/100), rare (≥1/10,000 to <1/1,000), very rare (<1/10,000) or not known (cannot be estimated from the available data).
Table 1. Adverse reactions reported in patients who received linagliptin 5 mg daily as monotherapy or as add-on therapies (frequencies identified from pooled analysis of placebo-controlled studies) in clinical trial and from post-marketing experience:
System organ class-Adverse reaction | Adverse reactions by treatment regimen | ||||
---|---|---|---|---|---|
Linagliptin monotherapy | Linagliptin + Metformin | ΛLinagliptin + Metformin + Sulphonylurea | Linagliptin + Insulin | Linagliptin + Metformin + Empagliflozin | |
Infections and infestations | |||||
Nasopharyngitis | uncommon | uncommon | not known | uncommon | not known |
Immune system disorders | |||||
Hypersensitivity (e.g. bronchial hyperreactivity) | uncommon | uncommon | uncommon | uncommon | not known |
Metabolism and nutrition disorders | |||||
Hypoglycaemia | very common | ||||
Respiratory, thoracic and mediastinal disorders | |||||
Cough | uncommon | uncommon | not known | uncommon | not known |
Gastrointestinal disorders | |||||
Pancreatitis | not known | not known | not known | uncommon | not known |
Constipation | uncommon | ||||
Skin and subcutaneous tissue disorders | |||||
Angioedema* | rare | ||||
Urticaria* | rare | ||||
Rash* | uncommon | ||||
Bullous pemphigoid* | μη γνωστή | ||||
Investigations | |||||
Amylase increased | rare | uncommon | uncommon | not known | uncommon |
Lipase increased** | common | common | common | common | common |
* Based on post-marketing experience
** Based on lipase elevations >3xULN observed in clinical trials
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.
Not applicable.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.