Source: FDA, National Drug Code (US) Revision Year: 2020
TREANDA is contraindicated in patients with a known hypersensitivity (e.g., anaphylactic and anaphylactoid reactions) to bendamustine [see Warnings and Precautions (4, 5.3)].
TREANDA caused severe myelosuppression (Grade 3-4) in 98% of patients in the two NHL studies (see Table 4). Three patients (2%) died from myelosuppression-related adverse reactions; one each from neutropenic sepsis, diffuse alveolar hemorrhage with Grade 3 thrombocytopenia, and pneumonia from an opportunistic infection (CMV).
Monitor complete blood counts, including leukocytes, platelets, hemoglobin (Hgb), and neutrophils frequently. In the clinical trials, blood counts were monitored every week initially. Hematologic nadirs were observed predominantly in the third week of therapy. Myelosuppression may require dose delays and/or subsequent dose reductions if recovery to the recommended values has not occurred by the first day of the next scheduled cycle. Prior to the initiation of the next cycle of therapy, the ANC should be ≥1 × 109/L and the platelet count should be ≥75 × 109/L [see Dosage and Administration (2.2) and (2.3)].
Infection, including pneumonia, sepsis, septic shock, hepatitis and death has occurred in adult and pediatric patients in clinical trials and in postmarketing reports. Patients with myelosuppression following treatment with TREANDA are more susceptible to infections. Advise patients with myelosuppression following TREANDA treatment to contact a physician if they have symptoms or signs of infection.
Patients treated with TREANDA are at risk for reactivation of infections including (but not limited to) hepatitis B, cytomegalovirus, Mycobacterium tuberculosis, and herpes zoster. Patients should undergo appropriate measures (including clinical and laboratory monitoring, prophylaxis, and treatment) for infection and infection reactivation prior to administration.
Infusion reactions to TREANDA have occurred commonly in clinical trials. Symptoms include fever, chills, pruritus and rash. In rare instances severe anaphylactic and anaphylactoid reactions have occurred, particularly in the second and subsequent cycles of therapy. Monitor clinically and discontinue drug for severe reactions. Ask patients about symptoms suggestive of infusion reactions after their first cycle of therapy. Patients who experience Grade 3 or worse allergic-type reactions should not be rechallenged. Consider measures to prevent severe reactions, including antihistamines, antipyretics and corticosteroids in subsequent cycles in patients who have experienced Grade 1 or 2 infusion reactions. Discontinue TREANDA for patients with Grade 4 infusion reactions. Consider discontinuation for Grade 3 infusions reactions as clinically appropriate considering individual benefits, risks, and supportive care.
Tumor lysis syndrome associated with TREANDA treatment has occurred in patients in clinical trials and in postmarketing reports. The onset tends to be within the first treatment cycle of TREANDA and, without intervention, may lead to acute renal failure and death. Preventive measures include vigorous hydration and close monitoring of blood chemistry, particularly potassium and uric acid levels. Allopurinol has also been used during the beginning of TREANDA therapy. However, there may be an increased risk of severe skin toxicity when TREANDA and allopurinol are administered concomitantly [see Warnings and Precautions (5.5)].
Fatal and serious skin reactions have been reported with TREANDA treatment in clinical trials and postmarketing safety reports, including toxic skin reactions [Stevens-Johnson Syndrome (SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS)], bullous exanthema, and rash. Events occurred when TREANDA was given as a single agent and in combination with other anticancer agents or allopurinol.
Where skin reactions occur, they may be progressive and increase in severity with further treatment. Monitor patients with skin reactions closely. If skin reactions are severe or progressive, withhold or discontinue TREANDA.
Fatal and serious cases of liver injury have been reported with TREANDA. Combination therapy, progressive disease or reactivation of hepatitis B were confounding factors in some patients [see Warnings and Precautions (5.2)]. Most cases were reported within the first three months of starting therapy. Monitor liver chemistry tests prior to and during bendamustine therapy.
There are reports of pre-malignant and malignant diseases that have developed in patients who have been treated with TREANDA, including myelodysplastic syndrome, myeloproliferative disorders, acute myeloid leukemia and bronchial carcinoma. The association with bendamustine hydrochloride therapy has not been determined.
TREANDA extravasations have been reported in postmarketing resulting in hospitalizations from erythema, marked swelling, and pain. Assure good venous access prior to starting TREANDA infusion and monitor the intravenous infusion site for redness, swelling, pain, infection, and necrosis during and after administration of TREANDA.
Based on findings from animal reproduction studies and the drug’s mechanism of action, TREANDA can cause fetal harm when administered to a pregnant woman. Single intraperitoneal doses of bendamustine (that approximated the maximum recommended human dose based on body surface area) to pregnant mice and rats during organogenesis caused adverse developmental outcomes, including an increase in resorptions, skeletal and visceral malformations, and decreased fetal body weights. Advise pregnant women of the potential risk to a fetus. Advise females of reproductive potential to use an effective method of contraception during treatment with TREANDA and for at least 6 months after the final dose. Advise males with female partners of reproductive potential to use effective contraception during treatment with TREANDA and for at least 3 months after the final dose [see Use in Specific Populations (8.1, 8.3) and Clinical Pharmacology (12.1)].
The following clinically significant adverse reactions have been associated with TREANDA in clinical trials and are discussed in greater detail in other sections of the label.
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.
The data described below reflect exposure to TREANDA in 153 patients. TREANDA was studied in an active-controlled, randomized trial. The population was 45-77 years of age, 63% male, 100% white, and had treatment naïve CLL. All patients started the study at a dose of 100 mg/m² intravenously over 30 minutes on Days 1 and 2 every 28 days.
Adverse reactions were reported according to NCI CTC v.2.0. In the randomized CLL clinical study, non-hematologic adverse reactions (any grade) in the TREANDA group that occurred with a frequency greater than 15% were pyrexia (24%), nausea (20%), and vomiting (16%).
Other adverse reactions seen frequently in one or more studies included asthenia, fatigue, malaise, and weakness; dry mouth; somnolence; cough; constipation; headache; mucosal inflammation and stomatitis.
Worsening hypertension was reported in 4 patients treated with TREANDA in the randomized CLL clinical study and in none treated with chlorambucil. Three of these 4 adverse reactions were described as a hypertensive crisis and were managed with oral medications and resolved.
The most frequent adverse reactions leading to study withdrawal for patients receiving TREANDA were hypersensitivity (2%) and pyrexia (1%).
Table 1 contains the treatment emergent adverse reactions, regardless of attribution, that were reported in ≥5% of patients in either treatment group in the randomized CLL clinical study.
Table 1. Non-Hematologic Adverse Reactions Occurring in Randomized CLL Clinical Study in at Least 5% of Patients:
Number (%) of patients | ||||
---|---|---|---|---|
TREANDA (N=153) | Chlorambucil (N=143) | |||
Body System/Adverse Reaction | All Grades | Grade 3/4 | All Grades | Grade 3/4 |
Total number of patients with at least 1 adverse reaction | 121 (79) | 52 (34) | 96 (67) | 25 (17) |
Gastrointestinal disorders | ||||
Nausea | 31 (20) | 1 (<1) | 21 (15) | 1 (<1) |
Vomiting | 24 (16) | 1 (<1) | 9 (6) | 0 |
Diarrhea | 14 (9) | 2 (1) | 5 (3) | 0 |
General disorders and administration site conditions | ||||
Pyrexia | 36 (24) | 6 (4) | 8 (6) | 2 (1) |
Fatigue | 14 (9) | 2 (1) | 8 (6) | 0 |
Asthenia | 13 (8) | 0 | 6 (4) | 0 |
Chills | 9 (6) | 0 | 1 (<1) | 0 |
Immune system disorders | ||||
Hypersensitivity | 7 (5) | 2 (1) | 3 (2) | 0 |
Infections and infestations | ||||
Nasopharyngitis | 10 (7) | 0 | 12 (8) | 0 |
Infection | 9 (6) | 3 (2) | 1 (<1) | 1 (<1) |
Herpes simplex | 5 (3) | 0 | 7 (5) | 0 |
Investigations | ||||
Weight decreased | 11 (7) | 0 | 5 (3) | 0 |
Metabolism and nutrition disorders | ||||
Hyperuricemia | 11 (7) | 3 (2) | 2 (1) | 0 |
Respiratory, thoracic and mediastinal disorders | ||||
Cough | 6 (4) | 1 (<1) | 7 (5) | 1 (<1) |
Skin and subcutaneous tissue disorders | ||||
Rash | 12 (8) | 4 (3) | 7 (5) | 3 (2) |
Pruritus | 8 (5) | 0 | 2 (1) | 0 |
The Grade 3 and 4 hematology laboratory test values by treatment group in the randomized CLL clinical study are described in Table 2. These findings confirm the myelosuppressive effects seen in patients treated with TREANDA. Red blood cell transfusions were administered to 20% of patients receiving TREANDA compared with 6% of patients receiving chlorambucil.
Table 2. Incidence of Hematology Laboratory Abnormalities in Patients Who Received TREANDA or Chlorambucil in the Randomized CLL Clinical Study:
TREANDA N=150 | Chlorambucil N=141 | |||
---|---|---|---|---|
Laboratory Abnormality | All Grades n (%) | Grade 3/4 n (%) | All Grades n (%) | Grade 3/4 n (%) |
Hemoglobin Decreased | 134 (89) | 20 (13) | 115 (82) | 12 (9) |
Platelets Decreased | 116 (77) | 16 (11) | 110 (78) | 14 (10) |
Leukocytes Decreased | 92 (61) | 42 (28) | 26 (18) | 4 (3) |
Lymphocytes Decreased | 102 (68) | 70 (47) | 27 (19) | 6 (4) |
Neutrophils Decreased | 113 (75) | 65 (43) | 86 (61) | 30 (21) |
In the randomized CLL trial, 34% of patients had bilirubin elevations, some without associated significant elevations in AST and ALT. Grade 3 or 4 increased bilirubin occurred in 3% of patients. Increases in AST and ALT of Grade 3 or 4 were limited to 1% and 3% of patients, respectively. Patients treated with TREANDA may also have changes in their creatinine levels. If abnormalities are detected, monitoring of these parameters should be continued to ensure that further deterioration does not occur.
The data described below reflect exposure to TREANDA in 176 patients with indolent B-cell NHL treated in two single-arm studies. The population was 31-84 years of age, 60% male, and 40% female. The race distribution was 89% White, 7% Black, 3% Hispanic, 1% other, and <1% Asian. These patients received TREANDA at a dose of 120 mg/m² intravenously on Days 1 and 2 for up to eight 21-day cycles.
The adverse reactions occurring in at least 5% of the NHL patients, regardless of severity, are shown in Table 3. The most common non-hematologic adverse reactions (≥30%) were nausea (75%), fatigue (57%), vomiting (40%), diarrhea (37%) and pyrexia (34%). The most common non-hematologic Grade 3 or 4 adverse reactions (≥5%) were fatigue (11%), febrile neutropenia (6%), and pneumonia, hypokalemia and dehydration, each reported in 5% of patients.
Table 3. Non-Hematologic Adverse Reactions Occurring in at Least 5% of NHL Patients Treated with TREANDA (N=176):
Body System/Adverse | Number (%) of patients* | |
---|---|---|
Reaction | All Grades | Grade 3/4 |
Total number of patients with at least 1 adverse reaction | 176 (100) | 94 (53) |
Cardiac disorders | ||
Tachycardia | 13 (7) | 0 |
Gastrointestinal disorders | ||
Nausea | 132 (75) | 7 (4) |
Vomiting | 71 (40) | 5 (3) |
Diarrhea | 65 (37) | 6 (3) |
Constipation | 51 (29) | 1 (<1) |
Stomatitis | 27 (15) | 1 (<1) |
Abdominal pain | 22 (13) | 2 (1) |
Dyspepsia | 20 (11) | 0 |
Gastroesophageal reflux disease | 18 (10) | 0 |
Dry mouth | 15 (9) | 1 (<1) |
Abdominal pain upper | 8 (5) | 0 |
Abdominal distension | 8 (5) | 0 |
General disorders and administration site conditions | ||
Fatigue | 101 (57) | 19 (11) |
Pyrexia | 59 (34) | 3 (2) |
Chills | 24 (14) | 0 |
Edema peripheral | 23 (13) | 1 (<1) |
Asthenia | 19 (11) | 4 (2) |
Chest pain | 11 (6) | 1 (<1) |
Infusion site pain | 11 (6) | 0 |
Pain | 10 (6) | 0 |
Catheter site pain | 8 (5) | 0 |
Infections and infestations | ||
Herpes zoster | 18 (10) | 5 (3) |
Upper respiratory tract infection | 18 (10) | 0 |
Urinary tract infection | 17 (10) | 4 (2) |
Sinusitis | 15 (9) | 0 |
Pneumonia | 14 (8) | 9 (5) |
Febrile neutropenia | 11 (6) | 11 (6) |
Oral candidiasis | 11 (6) | 2 (1) |
Nasopharyngitis | 11 (6) | 0 |
Investigations | ||
Weight decreased | 31 (18) | 3 (2) |
Metabolism and nutrition disorders | ||
Anorexia | 40 (23) | 3 (2) |
Dehydration | 24 (14) | 8 (5) |
Decreased appetite | 22 (13) | 1 (<1) |
Hypokalemia | 15 (9) | 9 (5) |
Musculoskeletal and connective tissue disorders | ||
Back pain | 25 (14) | 5 (3) |
Arthralgia | 11 (6) | 0 |
Pain in extremity | 8 (5) | 2 (1) |
Bone pain | 8 (5) | 0 |
Nervous system disorders | ||
Headache | 36 (21) | 0 |
Dizziness | 25 (14) | 0 |
Dysgeusia | 13 (7) | 0 |
Psychiatric disorders | ||
Insomnia | 23 (13) | 0 |
Anxiety | 14 (8) | 1 (<1) |
Depression | 10 (6) | 0 |
Respiratory, thoracic and mediastinal disorders | ||
Cough | 38 (22) | 1 (<1) |
Dyspnea | 28 (16) | 3 (2) |
Pharyngolaryngeal pain | 14 (8) | 1 (<1) |
Wheezing | 8 (5) | 0 |
Nasal congestion | 8 (5) | 0 |
Skin and subcutaneous tissue disorders | ||
Rash | 28 (16) | 1 (<1) |
Pruritus | 11 (6) | 0 |
Dry skin | 9 (5) | 0 |
Night sweats | 9 (5) | 0 |
Hyperhidrosis | 8 (5) | 0 |
Vascular disorders | ||
Hypotension | 10 (6) | 2 (1) |
* Patients may have reported more than 1 adverse reaction.
NOTE: Patients counted only once in each adverse reaction category and once in each body system category.
Hematologic toxicities, based on laboratory values and CTC grade, in NHL patients treated in both single arm studies combined are described in Table 4. Clinically important chemistry laboratory values that were new or worsened from baseline and occurred in >1% of patients at Grade 3 or 4, in NHL patients treated in both single arm studies combined were hyperglycemia (3%), elevated creatinine (2%), hyponatremia (2%), and hypocalcemia (2%).
Table 4. Incidence of Hematology Laboratory Abnormalities in Patients Who Received TREANDA in the NHL Studies:
Percent of patients | ||
---|---|---|
Hematology variable | All Grades | Grade 3/4 |
Lymphocytes Decreased | 99 | 94 |
Leukocytes Decreased | 94 | 56 |
Hemoglobin Decreased | 88 | 11 |
Neutrophils Decreased | 86 | 60 |
Platelets Decreased | 86 | 25 |
In both studies, serious adverse reactions, regardless of causality, were reported in 37% of patients receiving TREANDA. The most common serious adverse reactions occurring in ≥5% of patients were febrile neutropenia and pneumonia. Other important serious adverse reactions reported in clinical trials and/or postmarketing experience were acute renal failure, cardiac failure, hypersensitivity, skin reactions, pulmonary fibrosis, and myelodysplastic syndrome.
Serious drug-related adverse reactions reported in clinical trials included myelosuppression, infection, pneumonia, tumor lysis syndrome and infusion reactions [see Warnings and Precautions (5)]. Adverse reactions occurring less frequently but possibly related to TREANDA treatment were hemolysis, dysgeusia/taste disorder, atypical pneumonia, sepsis, herpes zoster, erythema, dermatitis, and skin necrosis.
The following adverse reactions have been identified during post-approval use of TREANDA. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.
Blood and lymphatic systems disorders: Pancytopenia
Cardiovascular disorders: Atrial fibrillation, congestive heart failure (some fatal), myocardial infarction (some fatal), palpitation
General disorders and administration site conditions: Injection site reactions (including phlebitis, pruritus, irritation, pain, swelling), infusion site reactions (including phlebitis, pruritus, irritation, pain, swelling)
Immune system disorders: Anaphylaxis
Infections and infestations: Pneumocystis jiroveci pneumonia
Respiratory, thoracic and mediastinal disorders: Pneumonitis
Skin and subcutaneous tissue disorders: Stevens-Johnson syndrome, Toxic epidermal necrolysis, DRESS (Drug reaction with eosinophilia and systemic symptoms) [see Warnings and Precautions (5.5)]
The coadministration of TREANDA with CYP1A2 inhibitors may increase bendamustine plasma concentrations and may result in increased incidence of adverse reactions with TREANDA [see Clinical Pharmacology (12.3)]. Consider alternative therapies that are not CYP1A2 inhibitors during treatment with TREANDA.
The coadministration of TREANDA with CYP1A2 inducers may decrease bendamustine plasma concentrations and may result in decreased efficacy of TREANDA [see Clinical Pharmacology (12.3)]. Consider alternative therapies that are not CYP1A2 inducers during treatment with TREANDA.
In animal reproduction studies, intraperitoneal administration of bendamustine to pregnant mice and rats during organogenesis at doses 0.6 to 1.8 times the maximum recommended human dose (MRHD) resulted in embryo-fetal and/or infant mortality, structural abnormalities, and alterations to growth (see Data). There are no available data on bendamustine hydrochloride use in pregnant women to evaluate for a drug-associated risk of major birth defects, miscarriage or adverse maternal or fetal outcomes. Advise pregnant women of the potential risk to a fetus.
The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. All pregnancies have a background risk of birth defect, loss, or other adverse outcomes. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively.
Bendamustine hydrochloride was intraperitoneally administered once to mice from 210 mg/m² (approximately 1.8 times the MRHD) during organogenesis and caused an increase in resorptions, skeletal and visceral malformations (exencephaly, cleft palates, accessory rib, and spinal deformities), and decreased fetal body weights. This dose did not appear to be maternally toxic and lower doses were not evaluated. Repeat intraperitoneal administration of bendamustine hydrochloride to mice on gestation days 7-11 resulted in an increase in resorptions from 75 mg/m² (approximately 0.6 times the MRHD) and an increase in abnormalities from 112.5 mg/m² (approximately 0.9 times the MRHD), similar to those seen after a single intraperitoneal administration.
Bendamustine hydrochloride was intraperitoneally administered once to rats from 120 mg/m² (approximately the MRHD) on gestation days 4, 7, 9, 11, or 13 and caused embryo and fetal lethality as indicated by increased resorptions and a decrease in live fetuses. A significant increase in external (effect on tail, head, and herniation of external organs [exomphalos]) and internal (hydronephrosis and hydrocephalus) malformations were seen in dosed rats.
There are no data on the presence of bendamustine hydrochloride or its metabolites in either human or animal milk, the effects on the breastfed child, or the effects on milk production. Because of the potential for serious adverse reactions in the breastfed child, advise patients that breastfeeding is not recommended during treatment with TREANDA, and for at least 1 week after the last dose.
TREANDA can cause fetal harm when administered to a pregnant woman [see Warnings and Precautions (5.9) and Use in Specific Populations (8.1)].
Pregnancy testing is recommended for females of reproductive potential prior to initiation of treatment with TREANDA.
TREANDA can cause embryo-fetal harm when administered to pregnant women [see Use in Specific Populations (8.1)]. Advise female patients of reproductive potential to use effective contraception during treatment with TREANDA and for at least 6 months after the final dose.
Based on genotoxicity findings, advise males with female partners of reproductive potential to use effective contraception during treatment with TREANDA and for at least 3 months after the final dose [see Nonclinical Toxicology (13.1)].
Based on findings from clinical studies, TREANDA may impair male fertility. Impaired spermatogenesis, azoospermia, and total germinal aplasia have been reported in male patients treated with alkylating agents, especially in combination with other drugs. In some instances spermatogenesis may return in patients in remission, but this may occur only several years after intensive chemotherapy has been discontinued. Patients should be warned of the potential risk to their reproductive capacities.
Based on findings from animal studies, TREANDA may impair male fertility due to an increase in morphologically abnormal spermatozoa. The long-term effects of TREANDA on male fertility, including the reversibility of adverse effects, have not been studied [see Nonclinical Toxicology (13.1)].
Safety and effectiveness in pediatric patients have not been established.
Safety, pharmacokinetics and efficacy were assessed in a single open-label trial (NCT01088984) in patients aged 1-19 years with relapsed or refractory acute leukemia, including 27 patients with acute lymphocytic leukemia (ALL) and 16 patients with acute myeloid leukemia (AML). TREANDA was administered as an intravenous infusion over 60 minutes on Days 1 and 2 of each 21-day cycle. There was no treatment response (CR+ CRp) in any patient in the Phase 2 portion of the trial at a dose of 120 mg/m². However, 2 patients with ALL achieved CR at a dose of 90 mg/m² in the Phase 1 portion of the study. The safety profile in these patients was consistent with that seen in adults, and no new safety signals were identified.
The pharmacokinetics of bendamustine in 43 patients, aged 1 to 19 years (median age of 10 years) were within range of values previously observed in adults given the same dose based on body surface area.
No overall differences in safety were observed between patients ≥65 years of age and younger patients. Efficacy was lower in patients 65 and over with CLL receiving TREANDA based upon an overall response rate of 47% for patients 65 and over and 70% for younger patients. Progression free survival was also longer in younger patients with CLL receiving TREANDA (19 months vs. 12 months). No overall differences in efficacy in patients with non-Hodgkin Lymphoma were observed between geriatric patients and younger patients.
Do not use TREANDA in patients with creatinine clearance (CLcr) <30 mL/min [see Clinical Pharmacology (12.3)].
Do not use TREANDA in patients with AST or ALT 2.5-10 × upper limit of normal (ULN) and total bilirubin 1.5-3 × ULN, or total bilirubin >3 × ULN (see Clinical Pharmacology (12.3)].
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.