Source: Health Products Regulatory Authority (IE) Revision Year: 2021 Publisher: Recordati Industria Chimica e Farmaceutica s.p.A., Via Matteo Civitali, 1 20148, Milan, Italy
Lercanidipine should be administered with caution in patients with sick sinus syndrome (without a pacemaker).
Although hemodynamic controlled studies revealed no impairment of ventricular function, care is required in patients with left ventricular dysfunction.
It has been suggested that some short-acting dihydropyridines may be associated with increased cardiovascular risk in patients with ischaemic heart disease. Although lercanidipine is long-acting, caution is required in such patients. Some dihydropyridines may rarely lead to precordial pain or angina pectoris. Very rarely patients with pre-existing angina pectoris may experience increased frequency, duration or severity of these attacks. Isolated cases of myocardial infarction may be observed (see section 4.8).
Special care should be exercised when treatment is commenced in patients with mild to moderate renal impairment. Although the usual recommended dose of 10 mg daily may be tolerated, an increase to 20 mg daily should be approached with caution. The antihypertensive effect may be enhanced in patients with moderate hepatic impairment and consequently an adjustment of the dosage should be considered.
Lercanidipine is contraindicated in patients with severe hepatic impairment or renal impairment (GFR <30 ml/min), including patients undergoing haemodialysis (see section 4.2 and section 4.3).
Lercanidipine has been associated with the development of cloudy peritoneal effluent in patients on peritoneal dialysis. The turbidity is due to an increased triglyceride concentration in the peritoneal effluent. Whilst the mechanism is unknown, the turbidity tends to resolve soon after withdrawal of lercanidipine. This is an important association to recognise as cloudy peritoneal effluent can be mistaken for infective peritonitis with consequential unnecessary hospitalisation and empiric antibiotic administration.
Inducers of CYP3A4 like anticonvulsants (e.g. phenytoin, carbamazepine) and rifampicin may reduce lercanidipine plasma levels and therefore the efficacy of lercanidipine may be less than expected (see section 4.5).
Alcohol should be avoided since it may potentiate the effect of vasodilating antihypertensive drugs (see section 4.5).
This medicine contains lactose. Patients with rare hereditary problems of galactose intolerance, total lactase deficiency or glucose-galactose malabsorption should not take this medicine.
This medicine contains less than 1 mmol sodium (23 mg) per tablet, that is to say essentially “sodium-free”.
The safety and efficacy of lercanidipine have not been demonstrated in children.
Lercanidipine is known to be metabolised by the CYP3A4 enzyme and therefore inhibitors of CYP3A4 administered concurrently may interact with the metabolism and elimination of lercanidipine. An interaction study with a strong CYP3A4 inhibitor, ketoconazole, has shown a considerable increase in plasma levels of lercanidipine (a 15-fold increase of the AUC and an 8-fold increase of the Cmax for the eutomer S-lercanidipine).
Co-prescription of lercanidipine with inhibitors of CYP3A4 (e.g. ketoconazole, itraconazole, ritonavir, erythromycin, troleandomycin, clarithromycin) should be avoided (see section 4.3).
Increased plasma levels of both lercanidipine and ciclosporin have been observed following concomitant administration. A study in young healthy volunteers has shown that when ciclosporin was administered 3 hours after the lercanidipine intake, the plasma levels of lercanidipine did not change, while the AUC of ciclosporin increased by 27%. However, the co-administration of lercanidipine with ciclosporin has caused a 3-fold increase of the plasma levels of lercanidipine and a 21% increase of the ciclosporin AUC. Ciclosporin and lercanidipine should not be administered together (see section 4.3).
As for other dihydropyridines, lercanidipine is sensitive to inhibition of metabolism by grapefruit or grapefruit juice, with a consequent rise in its systemic availability and increased hypotensive effect. Lercanidipine should not be taken with grapefruit or grapefruit juice (see section 4.3).
Co-administration of lercanidipine with CYP3A4 inducers like anticonvulsants (e.g. phenytoin, phenobarbital, carbamazepine) and rifampicin should be approached with caution since the antihypertensive effect may be reduced and blood pressure should be monitored more frequently than usual (see section 4.4).
Alcohol should be avoided since it may potentiate the effect of vasodilating antihypertensive drugs (see section 4.4).
Caution should be exercised when lercanidipine is co-prescribed with other substrates of CYP3A4, like terfenadine, astemizole, class III antiarrhythmic drugs such as amiodarone, quinidine, sotalol.
When concomitantly administered at a dose of 20 mg with midazolam p.o. to elderly volunteers, lercanidipine absorption was increased (by approximately 40%) and the rate of absorption was decreased (tmax was delayed from 1.75 to 3 hours). Midazolam concentrations were not modified.
When lercanidipine was co-administered with metoprolol, a β-blocker eliminated mainly by the liver, the bioavailability of metoprolol was not changed while that of lercanidipine was reduced by 50%. This effect may be due to the reduction in the hepatic blood flow caused by β-blockers and may therefore occur with other drugs of this class. Consequently, lercanidipine may be safely administered with β-adrenoceptor blocking drugs, but dose adjustment may be required.
Co-administration of 20 mg lercanidipine in patients chronically treated with β-methyldigoxin showed no evidence of pharmacokinetic interaction. However, a mean increase of 33% in digoxin Cmax was observed, while AUC and renal clearance were not significantly modified. Patients on concomitant digoxin treatment should be closely monitored clinically for signs of digoxin toxicity.
An interaction study with fluoxetine (an inhibitor of CYP2D6 and CYP3A4), conducted in volunteers of an age of 65 ± 7 years (mean ± s.d.), has shown no clinically relevant modification of the pharmacokinetics of lercanidipine.
Concomitant administration of cimetidine 800 mg daily does not cause significant modifications in plasma levels of lercanidipine, but at higher doses caution is required since the bioavailability and the hypotensive effect of lercanidipine may be increased.
When a dose of 20 mg of lercanidipine was repeatedly co-administered with 40 mg of simvastatin, the AUC of lercanidipine was not significantly modified, while simvastatin AUC increased by 56% and that of its active metabolite β-hydroxyacid by 28%. It is unlikely that such changes are of clinical relevance. No interaction is expected when lercanidipine is administered in the morning and simvastatin in the evening, as indicated for such drug.
Lercanidipine has been safely administered with diuretics and ACE inhibitors.
As for all antihypertensive medications, an increased hypotensive effects may be observed when lercanidipine is administered with other medications affecting blood pressure, such as alphablockers for the treatment of urinary symptoms, tricyclic antidepressants, neuroleptics. On the contrary, a reduction of the hypotensive effect may be observed with a concomitant use with corticosteroids.
There are no data from the use of lercanidipine in pregnant women. Studies in animals have not shown teratogenic effects (see section 5.3), but these have been observed with other dihydropyridine compounds. ZANIDIP is not recommended during pregnancy and in women of childbearing-potential not using contraception.
It is unknown whether lercanidipine/metabolites are excreted in human milk. A risk to the newborns/infants cannot be excluded. ZANIDIP should not be used during breast-feeding.
No clinical data are available with lercanidipine. Reversible biochemical changes in the head of spermatozoa which can impair fecundation have been reported in some patients treated by channel blockers. In cases where repeated in-vitro fertilisation is unsuccessful and where another explanation cannot be found, the possibility of calcium channel blockers as the cause should be considered.
ZANIDIP has minor influence on the ability to drive and use machines. However, caution should be exercised because dizziness, asthenia, fatigue and rarely somnolence may occur.
The safety of lercanidipine at a dose of 10-20 mg once daily has been evaluated in double-blind, placebo-controlled clinical trials (with 1200 patients receiving lercanidipine and 603 patients receiving placebo) and in active-controlled and uncontrolled long term clinical trials on a total of 3676 hypertensive patients receiving lercanidipine.
The most commonly reported adverse reactions in clinical trials and in the post-marketing experience are: peripheral oedema, headache, flushing, tachycardia and palpitations.
In the table below, adverse reactions reported in clinical trials and in the worldwide post-marketing experience for which a reasonable causal relationship exists are listed by MedDRA system organ class and frequency: very common (≥1/10); common (≥1/100 to <1/10); uncommon (≥1/1,000 to <1/100); rare (≥1/10,000 to <1/1,000); very rare (<1/10,000), not known (cannot be estimated from the available data). Within each frequency grouping the observed adverse reactions are presented in order of decreasing seriousness.
MedDRA System Organ Class | Common | Uncommon | Rare | Not known |
---|---|---|---|---|
Immune system disorders | Hypersensitivity | |||
Nervous system disorders | Headache | Dizziness | Somnolence Syncope | |
Cardiac disorders | Tachycardia Palpitations | Angina pectoris | ||
Vascular disorders | Flushing | Hypotension | ||
Gastrointestinal disorders | Dyspepsia Nausea Abdominal pain upper | Vomiting Diarrhoea | Gingival hypertrophy1 Peritoneal cloudy effluent1 | |
Hepatobiliary disorders | Serum transaminase increased1 | |||
Skin and subcutaneous tissue disorders | Rash Pruritus | Urticaria | Angioedema1 | |
Musculoskeletal and connective tissue disorders | Myalgia | |||
Renal and urinary disorders | Polyuria | Pollakiuria | ||
General disorders and administration site conditions | Oedema peripheral | Asthenia Fatigue | Chest pain |
1 adverse reactions from spontaneous reporting in the worldwide post-marketing experience
In placebo controlled clinical trials the incidence of peripheral oedema was 0.9% with lercanidipine 10-20 mg and 0.83% with placebo. This frequency reached 2% in the overall study population including long term clinical trials. Lercanidipine does not appear to influence adversely blood sugar or serum lipid levels.
Some dihydropyridines may rarely lead to precordial pain or angina pectoris. Very rarely patients with pre-existing angina pectoris may experience increased frequency, duration or severity of these attacks. Isolated cases of myocardial infarction may be observed.
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via HPRA Pharmacovigilance. Website: www.hpra.ie.
Not applicable.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.