Ambrisentan

Chemical formula: C₂₂H₂₂N₂O₄  Molecular mass: 378.428 g/mol  PubChem compound: 6918493

Pharmacodynamic properties

Ambrisentan is an orally active, propanoic acid-class, ERA selective for the endothelin A (ETA) receptor. Endothelin plays a significant role in the pathophysiology of PAH.

  • Ambrisentan is a potent (Ki 0.016 nM) and highly selective ETA antagonist (approximately 4000-fold more selective for ETA as compared to ETB).
  • Ambrisentan blocks the ETA receptor subtype, localized predominantly on vascular smooth muscle cells and cardiac myocytes. This prevents endothelin-mediated activation of second messenger systems that result in vasoconstriction and smooth muscle cell proliferation.
  • The selectivity of ambrisentan for the ETA over the ETB receptor is expected to retain ETB receptor mediated production of the vasodilators nitric oxide and prostacyclin.

Pharmacokinetic properties

Absorption

Ambrisentan is absorbed rapidly in humans. After oral administration, maximum plasma concentrations (Cmax) of ambrisentan typically occur around 1.5 hours post-dose under both fasted and fed conditions. Cmax and area under the plasma concentration-time curve (AUC) increase dose proportionally over the therapeutic dose range. Steady-state is generally achieved following 4 days of repeat dosing.

A food-effect study involving administration of ambrisentan to healthy volunteers under fasting conditions and with a high-fat meal indicated that the Cmax was decreased 12% while the AUC remained unchanged. This decrease in peak concentration is not clinically significant, and therefore ambrisentan can be taken with or without food.

Distribution

Ambrisentan is highly plasma protein bound. The in vitro plasma protein binding of ambrisentan was, on average, 98.8% and independent of concentration over the range of 0.2–20 microgram/ml. Ambrisentan is primarily bound to albumin (96.5%) and to a lesser extent to alpha1-acid glycoprotein.

The distribution of ambrisentan into red blood cells is low, with a mean blood:plasma ratio of 0.57 and 0.61 in males and females, respectively.

Biotransformation

Ambrisentan is a non-sulphonamide (propanoic acid) ERA.

Ambrisentan is glucuronidated via several UGT isoenzymes (UGT1A9S, UGT2B7S and UGT1A3S) to form ambrisentan glucuronide (13%). Ambrisentan also undergoes oxidative metabolism mainly by CYP3A4 and to a lesser extent by CYP3A5 and CYP2C19 to form 4-hydroxymethyl ambrisentan (21%) which is further glucuronidated to 4-hydroxymethyl ambrisentan glucuronide (5%). The binding affinity of 4-hydroxymethyl ambrisentan for the human endothelin receptor is 65-fold less than ambrisentan. Therefore at concentrations observed in the plasma (approximately 4% relative to parent ambrisentan), 4-hydroxymethyl ambrisentan is not expected to contribute to pharmacological activity of ambrisentan.

In vitro data indicate that ambrisentan at 300 μM resulted in less than 50 % inhibition of UGT1A1, UGT1A6, UGT1A9, UGT2B7 (up to 30%) or of cytochrome P450 enzymes 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4 (up to 25%). In vitro, ambrisentan has no inhibitory effect on human transporters at clinically relevant concentrations, including Pgp, BCRP, MRP2, BSEP, OATP1B1, OATP1B3 and NTCP. Furthermore, ambrisentan did not induce MRP2, Pgp or BSEP protein expression in rat hepatocytes. Taken together, the in vitro data suggest ambrisentan at clinically relevant concentrations (plasma Cmax up to 3.2 μM) would not be expected to have an effect on UGT1A1, UGT1A6, UGT1A9, UGT2B7 or cytochrome P450 enzymes 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 3A4 or transport via BSEP, BCRP, Pgp, MRP2, OATP1B1/3, or NTCP.

The effects of steady-state ambrisentan (10 mg once daily) on the pharmacokinetics and pharmacodynamics of a single dose of warfarin (25 mg), as measured by PT and INR, were investigated in 20 healthy volunteers. Ambrisentan did not have any clinically relevant effects on the pharmacokinetics or pharmacodynamics of warfarin. Similarly, co-administration with warfarin did not affect the pharmacokinetics of ambrisentan.

The effect of 7-day dosing of sildenafil (20 mg three times daily) on the pharmacokinetics of a single dose of ambrisentan, and the effects of 7-day dosing of ambrisentan (10 mg once daily) on the pharmacokinetics of a single dose of sildenafil were investigated in 19 healthy volunteers. With the exception of a 13% increase in sildenafil Cmax following co-administration with ambrisentan, there were no other changes in the pharmacokinetic parameters of sildenafil, N-desmethyl-sildenafil and ambrisentan. This slight increase in sildenafil Cmax is not considered clinically relevant.

The effects of steady-state ambrisentan (10 mg once daily) on the pharmacokinetics of a single dose of tadalafil, and the effects of steady-state tadalafil (40 mg once daily) on the pharmacokinetics of a single dose of ambrisentan were studied in 23 healthy volunteers. Ambrisentan did not have any clinically relevant effects on the pharmacokinetics of tadalafil. Similarly, co-administration with tadalafil did not affect the pharmacokinetics of ambrisentan.

The effects of repeat dosing of ketoconazole (400 mg once daily) on the pharmacokinetics of a single dose of 10 mg ambrisentan were investigated in 16 healthy volunteers. Exposures of ambrisentan as measured by AUC(0-inf) and Cmax were increased by 35% and 20%, respectively. This change in exposure is unlikely to be of any clinical relevance and therefore ambrisentan may be co-administered with ketoconazole.

The effects of repeat dosing of cyclosporine A (100–150 mg twice daily) on the steady-state pharmacokinetics of ambrisentan (5 mg once daily), and the effects of repeat dosing of ambrisentan (5 mg once daily) on the steady-state pharmacokinetics of cyclosporine A (100–150 mg twice daily) were studied in healthy volunteers. The Cmax and AUC(0-τ) of ambrisentan increased (48% and 121%, respectively) in the presence of multiple doses of cyclosporine A. Based on these changes, the dose of ambrisentan should be limited to 5 mg once daily when co-administered with cyclosporine A. However, multiple doses of ambrisentan had no clinically relevant effect on cyclosporine A exposure, and no dose adjustment of cyclosporine A is warranted.

The effects of acute and repeat dosing of rifampicin (600 mg once daily) on the steady-state pharmacokinetics of ambrisentan (10 mg once daily) were studied in healthy volunteers. Following initial doses of rifampicin, a transient increase in ambrisentan AUC(0–τ) (121% and 116% after first and second doses of rifampicin, respectively) was observed, presumably due to a rifampicin-mediated OATP inhibition. However, there was no clinically relevant effect on ambrisentan exposure by day 8, following administration of multiple doses of rifampicin. Patients on ambrisentan therapy should be closely monitored when starting treatment with rifampicin.

The effects of repeat dosing of ambrisentan (10 mg) on the pharmacokinetics of single dose digoxin were studied in 15 healthy volunteers. Multiple doses of ambrisentan resulted in slight increases in digoxin AUC0-last and trough concentrations, and a 29% increase in digoxin Cmax. The increase in digoxin exposure observed in the presence of multiple doses of ambrisentan was not considered clinically relevant, and no dose adjustment of digoxin is warranted.

The effects of 12 days dosing with ambrisentan (10 mg once daily) on the pharmacokinetics of a single dose of oral contraceptive containing ethinyl estradiol (35 μg) and norethindrone (1 mg) were studied in healthy female volunteers. The Cmax and AUC(0–∞) were slightly decreased for ethinyl estradiol (8% and 4%, respectively), and slightly increased for norethindrone (13% and 14%, respectively). These changes in exposure to ethinyl estradiol or norethindrone were small and are unlikely to be clinically significant.

Elimination

Ambrisentan and its metabolites are eliminated primarily in the bile following hepatic and/or extrahepatic metabolism. Approximately 22% of the administered dose is recovered in the urine following oral administration with 3.3% being unchanged ambrisentan. Plasma elimination half-life in humans ranges from 13.6 to 16.5 hours.

Special populations

Based on the results of a population pharmacokinetic analysis in healthy volunteers and patients with PAH, the pharmacokinetics of ambrisentan were not significantly influenced by gender or age.

Renal impairment

Ambrisentan does not undergo significant renal metabolism or renal clearance (excretion). In a population pharmacokinetic analysis, creatinine clearance was found to be a statistically significant covariate affecting the oral clearance of ambrisentan. The magnitude of the decrease in oral clearance is modest (20-40%) in patients with moderate renal impairment and therefore is unlikely to be of any clinical relevance. However, caution should be used in patients with severe renal impairment.

Hepatic impairment

The main routes of metabolism of ambrisentan are glucuronidation and oxidation with subsequent elimination in the bile and therefore hepatic impairment might be expected to increase exposure (Cmax and AUC) of ambrisentan. In a population pharmacokinetic analysis, the oral clearance was shown to be decreased as a function of increasing bilirubin levels. However, the magnitude of effect of bilirubin is modest (compared to the typical patient with a bilirubin of 0.6 mg/dl, a patient with an elevated bilirubin of 4.5 mg/dl would have approximately 30% lower oral clearance of ambrisentan). The pharmacokinetics of ambrisentan in patients with hepatic impairment (with or without cirrhosis) has not been studied. Therefore ambrisentan should not be initiated in patients with severe hepatic impairment or clinically significant elevated hepatic aminotransferases (>3xULN).

Preclinical safety data

Due to the class primary pharmacologic effect, a large single dose of ambrisentan (i.e. an overdose) could lower arterial pressure and have the potential for causing hypotension and symptoms related to vasodilation.

Ambrisentan was not shown to be an inhibitor of bile acid transport or to produce overt hepatotoxicity.

Inflammation and changes in the nasal cavity epithelium have been seen in rodents after chronic administration at exposures below the therapeutic levels in humans. In dogs, slight inflammatory responses were observed following chronic high dose administration of ambrisentan at exposures greater than 20–fold that observed in patients.

Nasal bone hyperplasia of the ethmoid turbinates has been observed in the nasal cavity of rats treated with ambrisentan, at exposure levels 3-fold the clinical AUC. Nasal bone hyperplasia has not been observed with ambrisentan in mice or dogs. In the rat, hyperplasia of nasal turbinate bone is a recognised response to nasal inflammation, based on experience with other compounds.

Ambrisentan was clastogenic when tested at high concentrations in mammalian cells in vitro. No evidence for mutagenic or genotoxic effects of ambrisentan were seen in bacteria or in two in vivo rodent studies.

There was no evidence of carcinogenic potential in 2 year oral studies in rats and mice. There was a small increase in mammary fibroadenomas, a benign tumor, in male rats at the highest dose only. Systemic exposure to ambrisentan in male rats at this dose (based on steady-state AUC) was 6-fold that achieved at the 10 mg/day clinical dose.

Testicular tubular atrophy, which was occasionally associated with aspermia, was observed in oral repeat dose toxicity and fertility studies with male rats and mice without safety margin. The testicular changes were not fully recoverable during the off-dose periods evaluated. However no testicular changes were observed in dog studies of up to 39 weeks duration at an exposure 35–fold that seen in humans based on AUC. In male rats, there were no effects of ambrisentan on sperm motility at all doses tested (up to 300 mg/kg/day). A slight (<10%) decrease in the percentage of morphologically normal sperms was noted at 300 mg/kg/day but not at 100 mg/kg/day (>9-fold clinical exposure at 10 mg/day). The effect of ambrisentan on male human fertility is not known.

Ambrisentan has been shown to be teratogenic in rats and rabbits. Abnormalities of the lower jaw, tongue, and/or palate were seen at all doses tested. In addition, the rat study showed an increased incidence of interventricular septal defects, trunk vessel defects, thyroid and thymus abnormalities, ossification of the basisphenoid bone, and the occurrence of the umbilical artery located on the left side of the urinary bladder instead of the right side. Teratogenicity is a suspected class effect of ERAs.

Administration of ambrisentan to female rats from late-pregnancy through lactation caused adverse events on maternal behaviour, reduced pup survival and impairment of the reproductive capability of the offspring (with observation of small testes at necropsy), at exposure 3-fold the AUC at the maximum recommended human dose.

Related medicines

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.