Combination of two antihypertensive compounds with complementary mechanisms to control blood pressure in patients with essential hypertension: an angiotensin II receptor antagonist, candesartan and a dihydropyridinic calcium channel blocker, amlodipine. The combination of these substances has an additive antihypertensive effect, reducing blood pressure to a greater degree than either component alone.
Angiotensin II is the primary vasoactive hormone of the renin-angiotensin-aldosterone system and plays a role in the pathophysiology of hypertension, heart failure and other cardiovascular disorders.
It also has a role in the pathogenesis of end organ hypertrophy and damage. The major physiological effects of angiotensin II, such as vasoconstriction, aldosterone stimulation, regulation of salt and water homeostasis and stimulation of cell growth, are mediated via the type 1 (AT1) receptor.
Candesartan cilexetil is a prodrug suitable for oral use. It is rapidly converted to the active substance, candesartan, by ester hydrolysis during absorption from the gastrointestinal tract. Candesartan is an AIIRA, selective for AT1 receptors, with tight binding to and slow dissociation from the receptor. It has no agonist activity.
Amlodipine is a calcium ion influx inhibitor of the dihydropyridine group (slow channel blocker or calcium ion antagonist) and inhibits the transmembrane influx of calcium ions into cardiac and vascular smooth muscle.
The mechanism of the antihypertensive action of amlodipine is due to a direct relaxant effect on vascular smooth muscle. The precise mechanism by which amlodipine relieves angina has not been fully determined but amlodipine reduces total ischaemic burden by the following two actions:
1) Amlodipine dilates peripheral arterioles and thus, reduces the total peripheral resistance (afterload) against which the heart works. Since the heart rate remains stable, this unloading of the heart reduces myocardial energy consumption and oxygen requirements.
2) The mechanism of action of amlodipine also probably involves dilatation of the main coronary arteries and coronary arterioles, both in normal and ischaemic regions. This dilatation increases myocardial oxygen delivery in patients with coronary artery spasm (Prinzmetal’s or variant angina).
Candesartan does not inhibit ACE, which converts angiotensin I to angiotensin II and degrades bradykinin. There is no effect on ACE and no potentiation of bradykinin or substance P. In controlled clinical trials comparing candesartan with ACE inhibitors, the incidence of cough was lower in patients receiving candesartan cilexetil. Candesartan does not bind to or block other hormone receptors or ion channels known to be important in cardiovascular regulation. The antagonism of the angiotensin II (AT1) receptors results in dose related increases in plasma renin levels, angiotensin I and angiotensin II levels, and a decrease in plasma aldosterone concentration.
In patients with hypertension, once daily dosing provides clinically significant reductions of blood pressure in both the supine and standing positions throughout the 24 hour interval. Due to the slow onset of action, acute hypotension is not a feature of amlodipine administration.
In patients with angina, once daily administration of amlodipine increases total exercise time, time to angina onset, and time to 1 mm ST segment depression, and decreases both angina attack frequency and glyceryl trinitrate tablet consumption.
Amlodipine has not been associated with any adverse metabolic effects or changes in plasma lipids and is suitable for use in patients with asthma, diabetes, and gout.
Following oral administration, candesartan cilexetil is converted to the active substance candesartan. The absolute bioavailability of candesartan is approximately 40% after an oral solution of candesartan cilexetil. The relative bioavailability of the capsule formulation compared with the same oral solution is approximately 34% with very little variability. The estimated absolute bioavailability of the capsule is therefore 14%. The mean peak serum concentration (Cmax) is reached 3-4 hours following capsule intake. The candesartan serum concentrations increase linearly with increasing doses in the therapeutic dose range. No gender related differences in the pharmacokinetics of candesartan have been observed. The area under the serum concentration versus time curve (AUC) of candesartan is not significantly affected by food.
Candesartan is highly bound to plasma protein (more than 99%). The apparent volume of distribution of candesartan is 0.1 L/kg. The bioavailability of candesartan is not affected by food.
Candesartan is mainly eliminated unchanged via urine and bile and only to a minor extent eliminated by hepatic metabolism (CYP2C9). Available interaction studies indicate no effect on CYP2C9 and CYP3A4. Based on in vitro data, no interaction would be expected to occur in vivo with drugs whose metabolism is dependent upon cytochrome P450 isoenzymes CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 or CYP3A4. The terminal half-life of candesartan is approximately 9 hours. There is no accumulation following multiple doses.
Total plasma clearance of candesartan is about 0.37 ml/min/kg, with a renal clearance of about 0.19 mL/min/kg. The renal elimination of candesartan is both by glomerular filtration and active tubular secretion. Following an oral dose of 14C-labelled candesartan cilexetil, approximately 26% of the dose is excreted in the urine as candesartan and 7% as an inactive metabolite while approximately 56% of the dose is recovered in the faeces as candesartan and 10% as the inactive metabolite.
In the elderly (over 65 years) Cmax and AUC of candesartan are increased by approximately 50% and 80%, respectively in comparison to young subjects. However, the blood pressure response and the incidence of adverse events are similar after a given dose of candesartan in young and elderly patients.
In patients with mild to moderate renal impairment Cmax and AUC of candesartan increased during repeated dosing by approximately 50% and 70%, respectively, but t½ was not altered, compared to patients with normal renal function. The corresponding changes in patients with severe renal impairment were approximately 50% and 110%, respectively. The terminal half life (t½) of candesartan was approximately doubled in patients with severe renal impairment. The AUC of candesartan in patients undergoing haemodialysis was similar to that in patients with severe renal impairment.
In two studies, both including patients with mild to moderate hepatic impairment, there was an increase in the mean AUC of candesartan of approximately 20% in one study and 80% in the other study. There is no experience in patients with severe hepatic impairment.
After oral administration of therapeutic doses, amlodipine is well absorbed with peak blood levels between 6-12 hours post dose. Absolute bioavailability has been estimated to be between 64% and 80%.
The volume of distribution is approximately 21 L/kg. In vitro studies have shown that approximately 97.5% of circulating amlodipine is bound to plasma proteins. The bioavailability of amlodipine is not affected by food intake.
The terminal plasma elimination half-life is about 35-50 hours and is consistent with once daily dosing. Amlodipine is extensively metabolised by the liver to inactive metabolites with 10% of the parent compound and 60% of metabolites excreted in the urine.
Very limited clinical data are available regarding amlodipine administration in patients with hepatic impairment. Patients with hepatic insufficiency have decreased clearance of amlodipine resulting in a longer half-life and an increase in AUC of approximately 40-60%.
Changes in amlodipine plasma concentrations are not correlated with degree of renal impairment. Amlodipine is not dialysable.
The time to reach peak plasma concentrations of amlodipine is similar in elderly and younger subjects. Amlodipine clearance tends to be decreased with resulting increases in AUC and elimination half-life in elderly patients. Increases in AUC and elimination half-life in patients with congestive heart failure were as expected for the patient age group studied.
Preclinical data available for the components of this fixed dose combination are reported below.
There was no evidence of systemic or target organ toxicity at clinically relevant doses. In preclinical safety studies candesartan had effects on the kidneys and on red cell parameters at high doses in mice, rats, dogs and monkeys. Candesartan caused a reduction of red blood cell parameters (erythrocytes, haemoglobin, haematocrit). Effects on the kidneys (such as interstitial nephritis, tubular distension, basophilic tubules; increased plasma concentrations of urea and creatinine) were induced by candesartan which could be secondary to the hypotensive effect leading to alterations of renal perfusion. Furthermore, candesartan induced hyperplasia/hypertrophy of the juxtaglomerular cells. These changes were considered to be caused by the pharmacological action of candesartan. For therapeutic doses of candesartan in humans, the hyperplasia/hypertrophy of the renal juxtaglomerular cells does not seem to have any relevance.
Foetotoxicity has been observed in late pregnancy.
Data from in vitro and in vivo mutagenicity studies indicates that candesartan will not exert mutagenic or clastogenic activities under conditions of clinical use.
There was no evidence of carcinogenicity.
Reproductive studies in rats and mice have shown delayed date of delivery, prolonged duration of labour and decreased pup survival at doses approximately 50 times greater than the maximum recommended dosage for humans based on mg/kg.
There was no effect on the fertility of rats treated with amlodipine (males for 64 days and females 14 days prior to mating) at doses up to 10 mg/kg/day (8 times* the maximum recommended human dose of 10 mg on a mg/m² basis). In another rat study in which male rats were treated with amlodipine besilate for 30 days at a dose comparable with the human dose based on mg/kg, decreased plasma follicle-stimulating hormone and testosterone were found as well as decreases in sperm density and in the number of mature spermatids and Sertoli cells.
Rats and mice treated with amlodipine in the diet for two years, at concentrations calculated to provide daily dosage levels of 0.5, 1.25, and 2.5 mg/kg/day showed no evidence of carcinogenicity. The highest dose (for mice, similar to, and for rats twice* the maximum recommended clinical dose of 10 mg on a mg/m² basis) was close to the maximum tolerated dose for mice but not for rats.
Mutagenicity studies revealed no drug related effects at either the gene or chromosome levels.
* Based on patient weight of 50 kg.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.