Chlorambucil Other names: Chloraminophene Chlorobutine

Chemical formula: C₁₄H₁₉Cl₂NO₂  Molecular mass: 304.212 g/mol  PubChem compound: 2708

Mechanism of action

Chlorambucil is an aromatic nitrogen mustard derivative which acts as a bifunctional alkylating agent.

In addition to interference with DNA replication, chlorambucil induces cellular apoptosis via the accumulation of cytosolic p53 and subsequent activation of an apoptosis promoter (Bax).

Pharmacodynamic properties

Pharmacodynamic effects

The cytotoxic effect of chlorambucil is due to both chlorambucil and its major metabolite phenylacetic acid mustard.

Mechanism of resistance

Chlorambucil is an aromatic nitrogen mustard derivative and resistance to nitrogen mustards has been reported to be secondary to: alterations in the transport of these agents and their metabolites via various multi-resistant proteins, alterations in the kinetics of the DNA cross-links formed by these agents and changes in apoptosis and altered DNA repair activity. Chlorambucil is not a substrate of multi-resistant protein 1 (MRP1 or ABCC1), but its glutathione conjugates are substrates of MRP1 (ABCC1) and MRP2 (ABCC2).

Pharmacokinetic properties

Absorption

Chlorambucil is well absorbed by passive diffusion from the gastrointestinal tract and is measurable within 15-30 minutes of administration. The bioavailability of oral chlorambucil is approximately 70% to 100% following administration of single doses of 10-200 mg.

In a study of 12 patients administered approximately 0.2 mg/kg of oral chlorambucil, the mean dose adjusted maximum plasma concentration (492 ± 160 nanograms/ml) occurred between 0.25 and 2 hours after administration.

Consistent with the rapid, predictable absorption of chlorambucil, the inter-individual variability in the plasma pharmacokinetics of chlorambucil has been shown to be relatively small following oral dosages of between 15 and 70 mg (2-fold intra-patient variability, and a 2-4 fold interpatient variability in AUC).

The absorption of chlorambucil is reduced when taken after food. In a study of ten patients, food intake increased the median time to reach Cmax by greater than 100%, reduced the peak plasma concentration by greater than 50% and reduced mean AUC (0-∞) by approximately 27%.

Distribution

Chlorambucil has a volume of distribution of approximately 0.14-0.24 L/kg. Chlorambucil covalently binds to plasma proteins, primarily to albumin (98%), and covalently binds to red blood cells.

Biotransformation

Chlorambucil is extensively metabolised in the liver by monodichloroethylation and β-oxidation, forming phenylacetic acid mustard (PAAM) as the major metabolite, which possesses alkylating activity in animals. Chlorambucil and PAAM degrade in vivo forming monohydroxy and dihydroxy derivatives. In addition, chlorambucil reacts with glutathione to form mono- and diglutathionyl conjugates of chlorambucil.

Following the administration of approximately 0.2 mg/kg of oral chlorambucil, PAAM was detected in the plasma of some patients as early as 15 minutes and mean dose adjusted plasma concentration (Cmax) of 306 ± 73 nanograms/ml occurred within 1 to 3 hours.

Elimination

The terminal phase elimination half-life ranges from 1.3-1.5 hours for chlorambucil and is approximately 1.8 hours for PAAM. The extent of renal excretion of unchanged chlorambucil or PAAM is very low; less than 1% of the administered dose of each of these is excreted in the urine in 24 hours, with the rest of the dose eliminated mainly as monohydroxy and dihydroxy derivatives.

Preclinical safety data

Mutagenicity and Carcinogenicity

As with other cytotoxic agents chlorambucil is mutagenic in in vitro and in vivo genotoxicity tests and carcinogenic in animals and humans.

Reproductive toxicology

In rats, chlorambucil has been shown to damage spermatogenesis and cause testicular atrophy.

Teratogenicity

Chlorambucil has been shown to induce developmental abnormalities, such as short or kinky tail, microcephaly and exencephaly, digital abnormalities including ectro-, brachy-, syn- and polydactyly and long-bone abnormalities such as reduction in length, absence of one or more components, total absence of ossification sites in the embryo of mice and rats following a single oral administration of 4 to 20 mg/kg.

Chlorambucil has also been shown to induce renal abnormalities in the offspring of rats following a single intraperitoneal injection of 3 to 6 mg/kg.

Brain and plasma pharmacokinetics

After oral administration of 14C-marked chlorambucil to rats, the highest concentrations of radioactive marked material were found in the plasma, in the liver and in the kidneys. Only small concentrations were measured in the cerebral tissue of rats after intravenous administration of chlorambucil.

Related medicines

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.