Delamanid

Chemical formula: C₂₅H₂₅F₃N₄O₆  Molecular mass: 534.492 g/mol 

Mechanism of action

The pharmacological mode of action of delamanid involves inhibition of the synthesis of the mycobacterial cell wall components, methoxy-mycolic and keto-mycolic acid. The identified metabolites of delamanid do not show anti-mycobacterial activity.

Pharmacodynamic properties

Activity against specific pathogens

Delamanid has no in vitro activity against bacterial species other than mycobacteria.

Resistance

Mutation in one of the 5 coenzyme F420 genes is suggested as the mechanism for resistance against delamanid in mycobacteria. In mycobacteria, the in vitro frequencies of spontaneous resistance to delamanid were similar to those for isoniazid, and were higher than those for rifampicin. Resistance to delamanid has been documented to occur during treatment. Delamanid does not show cross-resistance with any of the currently used anti-tuberculosis medicinal products except pretomanid. In vitro studies have shown cross-resistance with pretomanid. This is likely to be due to delamanid and pretomanid being activated via the same pathway.

Susceptibility testing breakpoints

When 7H11 agar medium is used for drug susceptibility testing, the recommended epidemiological cut-off (ECOFF) and susceptibility testing interpretive criteria for delamanid are:

ECOFF: 0.016 mg/L

Clinical breakpoint: S ≤ 0.016 mg/L; R > 0.016 mg/L

S = susceptible; R = resistant

Pharmacokinetic properties

Absorption

Oral bioavailability of delamanid improves when administered with a standard meal, by about 2.7 fold compared to fasting conditions. The peak plasma concentrations are reached in approximately 4 hours post-dose, regardless of food intake.

Linearity/non-linearity

Delamanid plasma exposure increases less than proportionally with increasing dose.

Distribution

Delamanid highly binds to all plasma proteins with a binding to total proteins of ≥99.5%. Delamanid has a large apparent volume of distribution (Vz/F of 2,100 L).

Biotransformation

Delamanid is primarily metabolised in plasma by albumin and to a lesser extent by CYP3A4. The complete metabolic profile of delamanid has not yet been elucidated, and there is a potential for drug interactions with other co-administered medicinal products, if significant unknown metabolites are discovered. The identified metabolites do not show anti-mycobacterial activity but some contribute to QTc prolongation, mainly DM-6705. Concentrations of the identified metabolites progressively increase to steady state after 6 to 10 weeks.

Elimination

Delamanid disappears from plasma with a t1/2 of 30 to 38 hours. Delamanid is not excreted in urine.

Special populations

Paediatric population

During treatment with the recommended delamanid doses to adolescents and children with a body weight of at least 10 kg, similar plasma exposure were obtained as in adults.

Patients with renal impairment

Less than 5% of an oral dose of delamanid is recovered from urine. Mild renal impairment (50 mL/min < CrCLN < 80 mL/min) does not appear to affect delamanid exposure. Therefore no dose adjustment is needed for patients with mild or moderate renal impairment. It is not known whether delamanid and metabolites will be significantly removed by haemodialysis or peritoneal dialysis.

Patients with hepatic impairment

No dose adjustment is considered necessary for patients with mild hepatic impairment. Delamanid is not recommended in patients with moderate to severe hepatic impairment.

Elderly patients (≥65 years)

No patients of ≥65 years of age were included in clinical trials.

Preclinical safety data

Non-clinical data reveal no specific hazard for humans based on conventional studies for genotoxicity and carcinogenic potential. Delamanid and/or its metabolites have the potential to affect cardiac repolarisation via blockade of hERG potassium channels. In the dog, foamy macrophages were observed in lymphoid tissue of various organs during repeat-dose toxicity studies. The finding was shown to be partially reversible; the clinical relevance of this finding is unknown. Repeat-dose toxicity studies in rabbits revealed an inhibitory effect of delamanid and/or its metabolites on vitamin Kdependent blood clotting. In rabbits reproductive studies, embryo-fetal toxicity was observed at maternally toxic dosages. Pharmacokinetic data in animals have shown excretion of delamanid/metabolites into breast milk. In lactating rats, the Cmax for delamanid in breast milk was 4-fold higher than that of the blood. In juvenile toxicity studies in rats, all delamanid treatment-related findings were consistent with those noted in adult animals.

Related medicines

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.