Chemical formula: C₂₇H₃₀F₆N₂O₂ Molecular mass: 528.53 g/mol PubChem compound: 6918296
Dutasteride reduces circulating levels of dihydrotestosterone (DHT) by inhibiting both type 1 and type 2, 5α-reductase isoenzymes which are responsible for the conversion of testosterone to DHT.
Effect of daily doses of Dutasteride on the reduction on DHT is dose dependant and is observed within 1-2 weeks (85% and 90% reduction, respectively).
In patients with BPH treated with dutasteride 0.5 mg/day, the median decrease in serum DHT was 94% at 1 year and 93% at 2 years and the median increase in serum testosterone was 19% at both 1 and 2 years.
Significant reductions in prostate volume have been detected as early as one month after initiation of treatment and reductions continued through Month 24 (p<0.001). Dutasteride led to a mean reduction of total prostate volume of 23.6% (from 54.9ml at baseline to 42.1ml) at Month 12 compared with a mean reduction of 0.5% (from 54.0ml to 53.7ml) in the placebo group. Significant (p<0.001) reductions also occurred in prostate transitional zone volume as early as one month continuing through Month 24, with a mean reduction in prostate transitional zone volume of 17.8% (from 26.8ml at baseline to 21.4ml) in the Dutasteride group compared to a mean increase of 7.9% (from 26.8ml to 27.5ml) in the placebo group at Month 12. The reduction of the prostate volume seen during the first 2 years of double-blind treatment was maintained during an additional 2 years of open-label extension studies. Reduction of the size of the prostate leads to improvement of symptoms and a decreased risk for AUR and BPH-related surgery.
Following oral administration of a single 0.5 mg dutasteride dose, the time to peak serum concentrations of dutasteride is 1 to 3 hours. The absolute bioavailability is approximately 60%. The bioavailability of dutasteride is not affected by food.
Dutasteride has a large volume of distribution (300 to 500 L) and is highly bound to plasma proteins (>99.5%). Following daily dosing, dutasteride serum concentrations achieve 65% of steady state concentration after 1 month and approximately 90% after 3 months.
Steady state serum concentrations (Css) of approximately 40 ng/mL are achieved after 6 months of dosing 0.5 mg once a day. Dutasteride partitioning from serum into semen averaged 11.5%.
Dutasteride is extensively metabolized in vivo. In vitro, dutasteride is metabolized by the cytochrome P450 3A4 and 3A5 to three monohydroxylated metabolites and one dihydroxylated metabolite.
Following oral dosing of dutasteride 0.5 mg/day to steady state, 1.0% to 15.4% (mean of 5.4%) of the administered dose is excreted as unchanged dutasteride in the faeces. The remainder is excreted in the faeces as 4 major metabolites comprising 39%, 21%, 7%, and 7% each of drug-related material and 6 minor metabolites (less than 5% each). Only trace amounts of unchanged dutasteride (less than 0.1% of the dose) are detected in human urine.
The elimination of dutasteride is dose dependent and the process appears to be described by two elimination pathways in parallel, one that is saturable at clinically relevant concentrations and one that is non saturable.
At low serum concentrations (less than 3 ng/mL), dutasteride is cleared rapidly by both the concentration dependent and concentration independent elimination pathways. Single doses of 5 mg or less showed evidence of rapid clearance and a short half-life of 3 to 9 days.
At therapeutic concentrations, following repeat dosing of 0.5 mg/day, the slower, linear elimination pathway is dominating and the half-life is approx. 3-5 weeks.
Dutasteride pharmacokinetics were evaluated in 36 healthy male subjects between the ages of 24 and 87 years following administration of a single 5 mg dose of dutasteride. No significant influence of age was seen on the exposure of dutasteride but the half-life was shorter in men under 50 years of age. Half-life was not statistically different when comparing the 50-69 year old group to the greater than 70 years old.
The effect of renal impairment on dutasteride pharmacokinetics has not been studied. However, less than 0.1% of a steady-state 0.5 mg dose of dutasteride is recovered in human urine, so no clinically significant increase of the dutasteride plasma concentrations is anticipated for patients with renal impairment.
The effect on the pharmacokinetics of dutasteride in hepatic impairment has not been studied. Because dutasteride is eliminated mainly through metabolism the plasma levels of dutasteride are expected to be elevated in these patients and the half-life of dutasteride be prolonged.
Current studies of general toxicity, genotoxicity and carcinogenicity did not show any particular risk to humans.
Reproduction toxicity studies in male rats have shown a decreased weight of the prostate and seminal vesicles, decreased secretion from accessory genital glands and a reduction in fertility indices (caused by the pharmacological effect of dutasteride). The clinical relevance of these findings is unknown.
As with other 5 alpha-reductase inhibitors, feminisation of male foetuses in rats and rabbits has been noted when dutasteride was administered during gestation. Dutasteride has been found in blood from female rats after mating with dutasteride treated males. When dutasteride was administered during gestation to primates, no feminisation of male foetuses was seen at blood exposures sufficiently in excess of those likely to occur via human semen. It is unlikely that a male foetus will be adversely affected following seminal transfer of dutasteride.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.