Chemical formula: C₂₅H₂₂N₄O₄ Molecular mass: 442.467 g/mol PubChem compound: 9846180
TPO is the main cytokine involved in regulation of megakaryopoiesis and platelet production, and is the endogenous ligand for the TPO-R. Eltrombopag interacts with the transmembrane domain of the human TPO-R and initiates signalling cascades similar but not identical to that of endogenous thrombopoietin (TPO), inducing proliferation and differentiation from bone marrow progenitor cells.
The plasma eltrombopag concentration-time data collected in 88 patients with ITP in studies TRA100773A and TRA100773B were combined with data from 111 healthy adult subjects in a population PK analysis. Plasma eltrombopag AUC(0-τ) and Cmax estimates for ITP patients are presented (Table 1).
Table 1. Geometric mean (95% confidence intervals) of steady-state plasma eltrombopag pharmacokinetic parameters in adults with ITP:
Eltrombopag dose, once daily | N | AUC(0-τ)a, μg.h/ml | Cmaxa, μg/ml |
---|---|---|---|
30 mg | 28 | 47 (39, 58) | 3.78 (3.18, 4.49) |
50 mg | 34 | 108 (88, 134) | 8.01 (6.73, 9.53) |
75 mg | 26 | 168 (143, 198) | 12.7 (11.0, 14.5) |
a AUC(0-τ) and Cmax based on population PK post-hoc estimates
Plasma eltrombopag concentration-time data collected in 590 patients with HCV enrolled in phase III studies TPL103922/ENABLE 1 and TPL108390/ENABLE 2 were combined with data from patients with HCV enrolled in the phase II study TPL102357 and healthy adult subjects in a population PK analysis. Plasma eltrombopag Cmax and AUC(0-τ) estimates for patients with HCV enrolled in the phase III studies are presented for each dose studied in Table 2.
Table 2. Geometric mean (95% CI) steady-state plasma eltrombopag pharmacokinetic parameters in patients with chronic HCV:
Eltrombopag dose (once daily) | N | AUC(0-τ) (μg.h/ml) | Cmax (μg/ml) |
---|---|---|---|
25 mg | 330 | 118 (109, 128) | 6.40 (5.97, 6.86) |
50 mg | 119 | 166 (143, 192) | 9.08 (7.96, 10.35) |
75 mg | 45 | 301 (250, 363) | 16.71 (14.26, 19.58) |
100 mg | 96 | 354 (304, 411) | 19.19 (16.81, 21.91) |
Data presented as geometric mean (95% CI).
AUC(0-τ) and Cmax based on population PK post-hoc estimates at the highest dose in the data for each patient.
Eltrombopag is absorbed with a peak concentration occurring 2 to 6 hours after oral administration. Administration of eltrombopag concomitantly with antacids and other products containing polyvalent cations such as dairy products and mineral supplements significantly reduces eltrombopag exposure. In a relative bioavailability study in adults, the eltrombopag powder for oral suspension delivered 22% higher plasma AUC(0-∞) than the film-coated tablet formulation. The absolute oral bioavailability of eltrombopag after administration to humans has not been established. Based on urinary excretion and metabolites eliminated in faeces, the oral absorption of drug-related material following administration of a single 75 mg eltrombopag solution dose was estimated to be at least 52%.
Eltrombopag is highly bound to human plasma proteins (>99.9%), predominantly to albumin. Eltrombopag is a substrate for BCRP, but is not a substrate for P-glycoprotein or OATP1B1.
Eltrombopag is primarily metabolised through cleavage, oxidation and conjugation with glucuronic acid, glutathione, or cysteine. In a human radiolabel study, eltrombopag accounted for approximately 64% of plasma radiocarbon AUC0-∞. Minor metabolites due to glucuronidation and oxidation were also detected. In vitro studies suggest that CYP1A2 and CYP2C8 are responsible for oxidative metabolism of eltrombopag. Uridine diphosphoglucuronyl transferase UGT1A1 and UGT1A3 are responsible for glucuronidation, and bacteria in the lower gastrointestinal tract may be responsible for the cleavage pathway.
Absorbed eltrombopag is extensively metabolised. The predominant route of eltrombopag excretion is via faeces (59%) with 31% of the dose found in the urine as metabolites. Unchanged parent compound (eltrombopag) is not detected in urine. Unchanged eltrombopag excreted in faeces accounts for approximately 20% of the dose. The plasma elimination half-life of eltrombopag is approximately 21-32 hours.
Based on a human study with radiolabelled eltrombopag, glucuronidation plays a minor role in the metabolism of eltrombopag. Human liver microsome studies identified UGT1A1 and UGT1A3 as the enzymes responsible for eltrombopag glucuronidation. Eltrombopag was an inhibitor of a number of UGT enzymes in vitro. Clinically significant drug interactions involving glucuronidation are not anticipated due to limited contribution of individual UGT enzymes in the glucuronidation of eltrombopag.
Approximately 21% of an eltrombopag dose could undergo oxidative metabolism. Human liver microsome studies identified CYP1A2 and CYP2C8 as the enzymes responsible for eltrombopag oxidation. Eltrombopag does not inhibit or induce CYP enzymes based on in vitro and in vivo data.
In vitro studies demonstrate that eltrombopag is an inhibitor of the OATP1B1 transporter and an inhibitor of the BCRP transporter and eltrombopag increased exposure of the OATP1B1 and BCRP substrate rosuvastatin in a clinical drug interaction study. In clinical studies with eltrombopag, a dose reduction of statins by 50% was recommended.
Eltrombopag chelates with polyvalent cations such as iron, calcium, magnesium, aluminium, selenium and zinc.
In vitro studies demonstrated that eltrombopag is not a substrate for the organic anion transporter polypeptide, OATP1B1, but is an inhibitor of this transporter (IC50 value of 2.7 μM [1.2 μg/ml]). In vitro studies also demonstrated that eltrombopag is a breast cancer resistance protein (BCRP) substrate and inhibitor (IC50 value of 2.7 μM [1.2 μg/ml]).
The pharmacokinetics of eltrombopag have been studied after administration of eltrombopag to adult patients with renal impairment. Following administration of a single 50 mg dose, the AUC0-∞ of eltrombopag was 32% to 36% lower in patients with mild to moderate renal impairment, and 60% lower in patients with severe renal impairment compared with healthy volunteers. There was substantial variability and significant overlap in exposures between patients with renal impairment and healthy volunteers. Unbound eltrombopag (active) concentrations for this highly protein-bound medicinal product were not measured. Patients with impaired renal function should use eltrombopag with caution and close monitoring, for example by testing serum creatinine and/or urine analysis. The efficacy and safety of eltrombopag have not been established in patients with both moderate to severe renal impairment and hepatic impairment.
The pharmacokinetics of eltrombopag have been studied after administration of eltrombopag to adult patients with hepatic impairment. Following the administration of a single 50 mg dose, the AUC0-∞ of eltrombopag was 41% higher in patients with mild hepatic impairment and 80% to 93% higher in patients with moderate to severe hepatic impairment compared with healthy volunteers. There was substantial variability and significant overlap in exposures between patients with hepatic impairment and healthy volunteers. Unbound eltrombopag (active) concentrations for this highly protein-bound medicinal product were not measured.
The influence of hepatic impairment on the pharmacokinetics of eltrombopag following repeat administration was evaluated using a population pharmacokinetic analysis in 28 healthy adults and 714 patients with hepatic impairment (673 patients with HCV and 41 patients with chronic liver disease of other aetiology). Of the 714 patients, 642 were with mild hepatic impairment, 67 with moderate hepatic impairment, and 2 with severe hepatic impairment. Compared to healthy volunteers, patients with mild hepatic impairment had approximately 111% (95% CI: 45% to 283%) higher plasma eltrombopag AUC(0-τ) values and patients with moderate hepatic impairment had approximately 183% (95% CI: 90% to 459%) higher plasma eltrombopag AUC(0-τ) values.
Therefore, eltrombopag should not be used in ITP patients with hepatic impairment (Child-Pugh score ≥5) unless the expected benefit outweighs the identified risk of portal venous thrombosis. For patients with HCV initiate eltrombopag at a dose of 25 mg once daily.
The influence of East-Asian ethnicity on the pharmacokinetics of eltrombopag was evaluated using a population pharmacokinetic analysis in 111 healthy adults (31 East-Asians) and 88 patients with ITP (18 East-Asians). Based on estimates from the population pharmacokinetic analysis, East-Asian ITP patients had approximately 49% higher plasma eltrombopag AUC(0-τ) values as compared to non-East-Asian patients who were predominantly Caucasian.
The influence of East-/Southeast-Asian ethnicity on the pharmacokinetics of eltrombopag was evaluated using a population pharmacokinetic analysis in 635 patients with HCV (145 East-Asians and 69 Southeast-Asians). Based on estimates from the population pharmacokinetic analysis, East-/Southeast-Asian patients had approximately 55% higher plasma eltrombopag AUC(0-τ) values as compared to patients of other races who were predominantly Caucasian.
The influence of gender on the pharmacokinetics of eltrombopag was evaluated using a population pharmacokinetic analysis in 111 healthy adults (14 females) and 88 patients with ITP (57 females). Based on estimates from the population pharmacokinetic analysis, female ITP patients had approximately 23% higher plasma eltrombopag AUC(0-τ) as compared to male patients, without adjustment for body weight differences.
The influence of gender on eltrombopag pharmacokinetics was evaluated using population pharmacokinetics analysis in 635 patients with HCV (260 females). Based on model estimate, female HCV patient had approximately 41% higher plasma eltrombopag AUC(0-τ) as compared to male patients.
The influence of age on eltrombopag pharmacokinetics was evaluated using population pharmacokinetics analysis in 28 healthy subjects, 673 patients with HCV, and 41 patients with chronic liver disease of other aetiology ranging from 19 to 74 years old. There are no PK data on the use of eltrombopag in patients ≥75 years. Based on model estimate, elderly (≥65 years) patients had approximately 41% higher plasma eltrombopag AUC(0-τ) as compared to younger patients.
The pharmacokinetics of eltrombopag have been evaluated in 168 paediatric ITP patients dosed once daily in two studies, TRA108062/PETIT and TRA115450/PETIT-2. Plasma eltrombopag apparent clearance following oral administration (CL/F) increased with increasing body weight. The effects of race and sex on plasma eltrombopag CL/F estimates were consistent between paediatric and adult patients. East-/Southeast-Asian paediatric ITP patients had approximately 43% higher plasma eltrombopag AUC(0-τ) values as compared to non-Asian patients. Female paediatric ITP patients had approximately 25% higher plasma eltrombopag AUC(0-τ) values as compared to male patients.
The pharmacokinetic parameters of eltrombopag in paediatric patients with ITP are shown in Table 3.
Table 3. Geometric mean (95% CI) steady-state plasma eltrombopag pharmacokinetic parameters in paediatric patients with ITP (50 mg once daily dosing regimen):
Age | Cmax (μg/ml) | AUC(0-τ) (μg.hr/ml) |
---|---|---|
12 to 17 years (n=62) | 6.80 (6.17, 7.50) | 103 (91.1, 116) |
6 to 11 years (n=68) | 10.3 (9.42, 11.2) | 153 (137, 170) |
1 to 5 years (n=38) | 11.6 (10.4, 12.9) | 162 (139, 187) |
Data presented as geometric mean (95%CI). AUC(0-τ) and Cmax based on population PK post-hoc estimates.
Eltrombopag does not stimulate platelet production in mice, rats or dogs because of unique TPO receptor specificity. Therefore, data from these animals do not fully model potential adverse effects related to the pharmacology of eltrombopag in humans, including the reproduction and carcinogenicity studies.
Treatment-related cataracts were detected in rodents and were dose and time-dependent. At ≥6 times the human clinical exposure in adult ITP patients at 75 mg/day and 3 times the human clinical exposure in adult HCV patients at 100 mg/day, based on AUC, cataracts were observed in mice after 6 weeks and rats after 28 weeks of dosing. At 4 times the human clinical exposure in ITP patients at 75 mg/day and 2 times the human exposure in HCV patients at 100 mg/day, based on AUC, cataracts were observed in mice after 13 weeks and in rats after 39 weeks of dosing. At non-tolerated doses in pre-weaning juvenile rats dosed from Days 4-32 (approximately equating to a 2-year-old human at the end of the dosing period), ocular opacities were observed (histology not performed) at 9 times the maximum human clinical exposure in paediatric ITP patients at 75 mg/day, based on AUC. However, cataracts were not observed in juvenile rats given tolerated doses at 5 times the human clinical exposure in paediatric ITP patients, based on AUC. Cataracts have not been observed in adult dogs after 52 weeks of dosing at 2 times the human clinical exposure in adult or paediatric ITP patients at 75 mg/day and equivalent to the human clinical exposure in HCV patients at 100 mg/day, based on AUC).
Renal tubular toxicity was observed in studies of up to 14 days duration in mice and rats at exposures that were generally associated with morbidity and mortality. Tubular toxicity was also observed in a 2-year oral carcinogenicity study in mice at doses of 25, 75 and 150 mg/kg/day. Effects were less severe at lower doses and were characterised by a spectrum of regenerative changes. The exposure at the lowest dose was 1.2 or 0.8 times the human clinical exposure based on AUC in adult or paediatric ITP patients at 75 mg/day and 0.6 times the human clinical exposure in HCV patients at 100 mg/day, based on AUC. Renal effects were not observed in rats after 28 weeks or in dogs after 52 weeks at exposures 4 and 2 times the human clinical exposure in adult ITP patients and 3 and 2 times the human clinical exposure in paediatric ITP patients at 75 mg/day and 2 times and equivalent to the human clinical exposure in HCV patients at 100 mg/day, based on AUC.
Hepatocyte degeneration and/or necrosis, often accompanied by increased serum liver enzymes, was observed in mice, rats and dogs at doses that were associated with morbidity and mortality or were poorly tolerated. No hepatic effects were observed after chronic dosing in rats (28 weeks) and in dogs (52 weeks) at 4 or 2 times the human clinical exposure in adult ITP patients and 3 or 2 times the human clinical exposure in paediatric ITP patients at 75 mg/day and 2 times or equivalent to the human clinical exposure in HCV patients at 100 mg/day, based on AUC.
At poorly tolerated doses in rats and dogs (>10 or 7 times the human clinical exposure in adult or paediatric ITP patients at 75 mg/day and>4 times the human clinical exposure in HCV patients at 100 mg/day, based on AUC), decreased reticulocyte counts and regenerative bone marrow erythroid hyperplasia (rats only) were observed in short-term studies. There were no effects of note on red cell mass or reticulocyte counts after dosing for up to 28 weeks in rats, 52 weeks in dogs and 2 years in mice or rats at maximally tolerated doses which were 2 to 4 times human clinical exposure in adult or paediatric ITP patients at 75 mg/day and ≤2 times the human clinical exposure in HCV patients at 100 mg/day, based on AUC.
Endosteal hyperostosis was observed in a 28-week toxicity study in rats at a non-tolerated dose of 60 mg/kg/day (6 times or 4 times the human clinical exposure in adult or paediatric ITP patients at 75 mg/day and 3 times the human clinical exposure in HCV patients at 100 mg/day, based on AUC). There were no bone changes observed in mice or rats after lifetime exposure (2 years) at 4 times or 2 times the human clinical exposure in adult or paediatric ITP patients at 75 mg/day and 2 times the human clinical exposure in HCV patients at 100 mg/day, based on AUC.
Eltrombopag was not carcinogenic in mice at doses up to 75 mg/kg/day or in rats at doses up to 40 mg/kg/day (exposures up to 4 or 2 times the human clinical exposure in adult or paediatric ITP patients at 75 mg/day and 2 times the human clinical exposure in HCV patients at 100 mg/day, based on AUC). Eltrombopag was not mutagenic or clastogenic in a bacterial mutation assay or in two in vivo assays in rats (micronucleus and unscheduled DNA synthesis, 10 times or 8 times the human clinical exposure in adult or paediatric ITP patients at 75 mg/day and 7 times the human clinical exposure in HCV patients at 100 mg/day, based on Cmax). In the in vitro mouse lymphoma assay, eltrombopag was marginally positive (<3-fold increase in mutation frequency). These in vitro and in vivo findings suggest that eltrombopag does not pose a genotoxic risk to humans.
Eltrombopag did not affect female fertility, early embryonic development or embryofoetal development in rats at doses up to 20 mg/kg/day (2 times the human clinical exposure in adult or adolescent (12-17 years old) ITP patients at 75 mg/day and equivalent to the human clinical exposure in HCV patients at 100 mg/day, based on AUC). Also there was no effect on embryofoetal development in rabbits at doses up to 150 mg/kg/day, the highest dose tested (0.3 to 0.5 times the human clinical exposure in ITP patients at 75 mg/day and HCV patients at 100 mg/day, based on AUC). However, at a maternally toxic dose of 60 mg/kg/day (6 times the human clinical exposure in ITP patients at 75 mg/day and 3 times the human clinical exposure in HCV patients at 100 mg/day, based on AUC) in rats, eltrombopag treatment was associated with embryo lethality (increased pre- and post-implantation loss), reduced foetal body weight and gravid uterine weight in the female fertility study and a low incidence of cervical ribs and reduced foetal body weight in the embryofoetal development study. Eltrombopag should be used during pregnancy only if the expected benefit justifies the potential risk to the foetus. Eltrombopag did not affect male fertility in rats at doses up to 40 mg/kg/day, the highest dose tested (3 times the human clinical exposure in ITP patients at 75 mg/day and 2 times the human clinical exposure in HCV patients at 100 mg/day, based on AUC). In the pre- and post-natal development study in rats, there were no undesirable effects on pregnancy, parturition or lactation of F0 female rats at maternally non-toxic doses (10 and 20 mg/kg/day) and no effects on the growth, development, neurobehavioural or reproductive function of the offspring (F1). Eltrombopag was detected in the plasma of all F1 rat pups for the entire 22 hour sampling period following administration of medicinal product to the F0 dams, suggesting that rat pup exposure to eltrombopag was likely via lactation.
In vitro studies with eltrombopag suggest a potential phototoxicity risk; however, in rodents there was no evidence of cutaneous phototoxicity (10 or 7 times the human clinical exposure in adult or paediatric ITP patients at 75 mg/day and 5 times the human clinical exposure in HCV patients at 100 mg/day, based on AUC) or ocular phototoxicity (4 times the human clinical exposure in adult or paediatric ITP patients at 75 mg/day and 3 times the human clinical exposure in HCV patients at 100 mg/day, based on AUC). Furthermore, a clinical pharmacology study in 36 subjects showed no evidence that photosensitivity was increased following administration of eltrombopag 75 mg. This was measured by delayed phototoxic index. Nevertheless, a potential risk of photoallergy cannot be ruled out since no specific preclinical study could be performed.
At non-tolerated doses in pre-weaning rats, ocular opacities were observed. At tolerated doses, no ocular opacities were observed (see above subsection ‘Safety pharmacology and repeat-dose toxicity’). In conclusion, taking into account the exposure margins based on AUC, a risk of eltrombopag-related cataracts in paediatric patients cannot be excluded. There are no findings in juvenile rats to suggest a greater risk of toxicity with eltrombopag treatment in paediatric vs. adult ITP patients.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.