Letrozole

Chemical formula: C₁₇H₁₁N₅  Molecular mass: 285.303 g/mol  PubChem compound: 3902

Pharmacodynamic properties

The elimination of oestrogen-mediated growth stimulation is a prerequisite for tumour response in cases where the growth of tumour tissue depends on the presence of oestrogens and endocrine therapy is used. In postmenopausal women, oestrogens are mainly derived from the action of the aromatase enzyme, which converts adrenal androgens – primarily androstenedione and testosterone – to oestrone and oestradiol. The suppression of oestrogen biosynthesis in peripheral tissues and the cancer tissue itself can therefore be achieved by specifically inhibiting the aromatase enzyme.

Letrozole is a non-steroidal aromatase inhibitor. It inhibits the aromatase enzyme by competitively binding to the haem of the aromatase cytochrome P450, resulting in a reduction of oestrogen biosynthesis in all tissues where present.

Pharmacokinetic properties

Absorption

Letrozole is rapidly and completely absorbed from the gastrointestinal tract (mean absolute bioavailability: 99.9%). Food slightly decreases the rate of absorption (median tmax 1 hour fasted versus 2 hours fed; and mean Cmax 129 ± 20.3 nmol/litre fasted versus 98.7 ± 18.6 nmol/litre fed) but the extent of absorption (AUC) is not changed. The minor effect on the absorption rate is not considered to be of clinical relevance, and therefore letrozole may be taken without regard to mealtimes.

Distribution

Plasma protein binding of letrozole is approximately 60%, mainly to albumin (55%). The concentration of letrozole in erythrocytes is about 80% of that in plasma. After administration of 2.5 mg 14C-labelled letrozole, approximately 82% of the radioactivity in plasma was unchanged compound. Systemic exposure to metabolites is therefore low. Letrozole is rapidly and extensively distributed to tissues. Its apparent volume of distribution at steady state is about 1.87 ± 0.47 l/kg.

Biotransformation

Metabolic clearance to a pharmacologically inactive carbinol metabolite is the major elimination pathway of letrozole (CLm = 2.1 l/h) but is relatively slow when compared to hepatic blood flow (about 90 l/h). The cytochrome P450 isoenzymes 3A4 and 2A6 were found to be capable of converting letrozole to this metabolite. Formation of minor unidentified metabolites and direct renal and faecal excretion play only a minor role in the overall elimination of letrozole. Within 2 weeks after administration of 2.5 mg 14C-labelled letrozole to healthy postmenopausal volunteers, 88.2 ± 7.6% of the radioactivity was recovered in urine and 3.8 ± 0.9% in faeces. At least 75% of the radioactivity recovered in urine up to 216 hours (84.7 ± 7.8% of the dose) was attributed to a the glucuronide of the carbinol metabolite, about 9% to two unidentified metabolites, and 6% to unchanged letrozole.

Elimination

The apparent terminal elimination half-life in plasma is about 2 to 4 days. After daily administration of 2.5 mg steady-state levels are reached within 2 to 6 weeks. Plasma concentrations at steady state are approximately 7 times higher than concentrations measured after a single dose of 2.5 mg, while they are 1.5 to 2 times higher than the steady-state values predicted from the concentrations measured after a single dose, indicating a slight non-linearity in the pharmacokinetics of letrozole upon daily administration of 2.5 mg. Since steady-state levels are maintained over time, it can be concluded that no continuous accumulation of letrozole occurs.

Linearity/non-linearity

The pharmacokinetics of letrozole were dose proportional after single oral doses up to 10 mg (dose range: 0.01 to 30mg) and after daily doses up to 1.0 mg (dose range: 0.1 to 5mg). After a 30 mg single oral dose there was a slightly dose over-proportional increase in AUC value. The dose over-proportionality is likely to be the result of a saturation of metabolic elimination processes. Steady levels were reached after 1 to 2 months at all dosage regimens tested (0.1-5.0 mg daily).

Special populations

Elderly

Age had no effect on the pharmacokinetics of letrozole.

Renal impairment

In a study involving 19 volunteers with varying degrees of renal function (24-hour creatinine clearance 9-116 ml/min) no effect on the pharmacokinetics of letrozole was found after a single dose of 2.5 mg. In addition to the above study assessing the influence of renal impairment on letrozole, a covariate analysis was performed on the data of two pivotal studies (Study AR/BC2 and Study AR/BC3). Calculated creatinine clearance (CLcr) [Study AR/BC2 range: 19 to 187 mL/min; Study AR/BC3 range: 10 to 180 mL/min] showed no statistically significant association between letrozole plasma trough levels at steady-state (Cmin). Futhermore, data of Study AR/BC2 and Study AR/BC3 in second-line metastatic breast cancer showed no evidence of an adverse effect of letrozole on CLcr or an impairment of renal function.

Therefore, no dose adjustment is required for patients with renal impairment (CLcr ≥10 mL/min). Little information is available in patients with severe impairment of renal function (CLcr <10 mL/min).

Hepatic impairment

In a similar study involving subjects with varying degrees of hepatic function, the mean AUC values of the volunteers with moderate hepatic impairment (Child-Pugh B) was 37% higher than in normal subjects, but still within the range seen in subjects without impaired function. In a study comparing the pharmacokinetics of letrozole after a single oral dose in eight male subjects with liver cirrhosis and severe hepatic impairment (Child-Pugh C) to those in healthy volunteers (N=8), AUC and t½ increased by 95 and 187%, respectively. Thus, letrozole should be administered with caution to patients with severe hepatic impairment and after consideration of the risk/benefit in the individual patient.

Preclinical safety data

In a variety of preclinical safety studies conducted in standard animal species, there was no evidence of systemic or target organ toxicity.

Letrozole showed a low degree of acute toxicity in rodents exposed up to 2000 mg/kg. In dogs letrozole caused signs of moderate toxicity at 100 mg/kg.

In repeated-dose toxicity studies in rats and dogs up to 12 months, the main findings observed can be attributed to the pharmacological action of the compound. The no-adverse-effect level was 0.3 mg/kg in both species.

Oral administration of letrozole to female rats resulted in decreases in mating and pregnancy ratios and increases in pre-implantation loss.

Both in vitro and in vivo investigations on letrozole’s mutagenic potential revealed no indications of any genotoxicity.

In a 104-week rat carcinogenicity study, no treatment-related tumours were noted in male rats. In female rats, a reduced incidence of benign and malignant mammary tumours at all the doses of letrozole was found.

In a 104-week mouse carcinogenicity study, no treatment-related tumors were noted in male mice. In female mice, a generally dose-related increase in the incidence of benign ovarian granulosa theca cell tumors was observed at all doses of letrozole tested. These tumors were considered to be related to the pharmacological inhibition of estrogen synthesis and may be due to increased LH resulting from the decrease in circulating estrogen.

Letrozole was embryotoxic and foetotoxic in pregnant rats and rabbits following oral administration at clinically relevant doses. In rats that had live foetuses, there was an increase in the incidence of foetal malformations including domed head and cervical/centrum vertebral fusion. An increased incidence of foetal malformations was not seen in the rabbit. It is not known whether this was an indirect consequence of the pharmacological properties (inhibition of oestrogen biosynthesis) or a direct drug effect.

Preclinical observations were confined to those associated with the recognised pharmacological action, which is the only safety concern for human use derived from animal studies.

Related medicines

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.