Losartan Other names: Losartan potassium

Chemical formula: C₂₂H₂₃ClN₆O  Molecular mass: 422.911 g/mol  PubChem compound: 3961

Mechanism of action

Losartan is a synthetic oral angiotensin-II receptor (type AT1) antagonist. Angiotensin II, a potent vasoconstrictor, is the primary active hormone of the renin/angiotensin system and an important determinant of the pathophysiology of hypertension. Angiotensin II binds to the AT1 receptor found in many tissues (e.g. vascular smooth muscle, adrenal gland, kidneys and the heart) and elicits several important biological actions, including vasoconstriction and the release of aldosterone. Angiotensin II also stimulates smooth muscle cell proliferation.

Losartan selectively blocks the AT1 receptor. In vitro and in vivo losartan and its pharmacologically active carboxylic acid metabolite E-3174 block all physiologically relevant actions of angiotensin II, regardless of the source or route of its synthesis.

Pharmacodynamic properties

Losartan does not have an agonist effect nor does it block other hormone receptors or ion channels important in cardiovascular regulation. Furthermore losartan does not inhibit ACE (kininase II), the enzyme that degrades bradykinin. Consequently, there is no potentiation of undesirable bradykinin-mediated effects.

During administration of losartan, removal of the angiotensin II negative feedback on renin secretion leads to increased plasma renin activity (PRA). Increase in the PRA leads to an increase in angiotensin II in plasma. Despite these increases, antihypertensive activity and suppression of plasma aldosterone concentration are maintained, indicating effective angiotensin II receptor blockade. After discontinuation of losartan, PRA and angiotensin II values fell within three days to the baseline values.

Both losartan and its principal active metabolite have a far greater affinity for the AT1-receptor than for the AT2receptor. The active metabolite is 10 to 40-times more active than losartan on a weight for weight basis.

Pharmacokinetic properties

Absorption

Following oral administration, losartan is well absorbed and undergoes first-pass metabolism, forming an active carboxylic acid metabolite and other inactive metabolites. The systemic bioavailability of losartan tablets is approximately 33%. Mean peak concentrations of losartan and its active metabolite are reached in 1 hour and in 3-4 hours, respectively.

Distribution

Both losartan and its active metabolite are ≥99% bound to plasma proteins, primarily albumin. The volume of distribution of losartan is 34 litres.

Biotransformation

About 14% of an intravenously- or orally-administered dose of losartan is converted to its active metabolite. Following oral and intravenous administration of 14C-labelled losartan potassium, circulating plasma radioactivity primarily is attributed to losartan and its active metabolite. Minimal conversion of losartan to its active metabolite was seen in about one percent of individuals studied.

In addition to the active metabolite, inactive metabolites are formed.

Elimination

Plasma clearance of losartan and its active metabolite is about 600 ml/min and 50 ml/min, respectively. Renal clearance of losartan and its active metabolite is about 74 ml/min and 26 ml/min, respectively. When losartan is administered orally, about 4% of the dose is excreted unchanged in the urine, and about 6% of the dose is excreted in the urine as active metabolite. The pharmacokinetics of losartan and its active metabolite are linear with oral losartan potassium doses up to 200 mg.

Following oral administration, plasma concentrations of losartan and its active metabolite decline polyexponentially, with a terminal half-life of about 2 hours and 6-9 hours, respectively. During once-daily dosing with 100 mg, neither losartan nor its active metabolite accumulates significantly in plasma.

Both biliary and urinary excretions contribute to the elimination of losartan and its metabolites. Following an oral dose/intravenous administration of 14C-labelled losartan in man, about 35%/43% of radioactivity is recovered in the urine and 58%/50% in the faeces.

Characteristics in patients

In elderly hypertensive patients the plasma concentrations of losartan and its active metabolite do not differ essentially from those found in young hypertensive patients.

In female hypertensive patients the plasma levels of losartan were up to twice as high as in male hypertensive patients, while the plasma levels of the active metabolite did not differ between men and women.

In patients with mild to moderate alcohol-induced hepatic cirrhosis, the plasma levels of losartan and its active metabolite after oral administration were respectively 5 and 1.7 times higher than in young male volunteers.

Plasma concentrations of losartan are not altered in patients with a creatinine clearance above 10 ml/minute. Compared to patients with normal renal function, the AUC for losartan is about 2-times higher in haemodialysis patients. The plasma concentrations of the active metabolite are not altered in patients with renal impairment or in haemodialysis patients.

Neither losartan nor the active metabolite can be removed by haemodialysis.

Pharmacokinetics in paediatric patients

The pharmacokinetics of losartan have been investigated in 50 hypertensive paediatric patients >1 month to <16 years of age following once daily oral administration of approximately 0.54 to 0.77 mg/kg of losartan (mean doses).

The results showed that the active metabolite is formed from losartan in all age groups. The results showed roughly similar pharmacokinetic parameters of losartan following oral administration in infants and toddlers, preschool children, school age children and adolescents. The pharmacokinetic parameters for the metabolite differed to a greater extent between the age groups. When comparing preschool children with adolescents these differences became statistically significant. Exposure in infants/toddlers was comparatively high.

Preclinical safety data

Preclinical data reveal no special hazard for humans based on conventional studies of general pharmacology, genotoxicity and carcinogenic potential. In repeated dose toxicity studies, the administration of losartan induced a decrease in the red blood cell parameters (erythrocytes, haemoglobin, haematocrit), a rise in urea-N in the serum and occasional rises in serum creatinine, a decrease in heart weight (without a histological correlate) and gastrointestinal changes (mucous membrane lesions, ulcers, erosions, haemorrhages). Like other substances that directly affect the renin-angiotensin system, losartan has been shown to induce adverse reactions on the late foetal development, resulting in foetal death and malformations.

Related medicines

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.