Combination of two antihyperglycaemic medicinal products with complementary mechanisms of action to improve glycaemic control in patients with type 2 diabetes: saxagliptin, a dipeptidyl peptidase 4 (DPP4) inhibitor, and metformin hydrochloride, a member of the biguanide class.
Saxagliptin is a highly potent (Ki: 1.3 nM), selective, reversible, competitive, DPP4 inhibitor. In patients with type 2 diabetes, administration of saxagliptin led to inhibition of DPP4 enzyme activity for a 24-hour period. After an oral glucose load, this DPP4 inhibition resulted in a 2- to 3-fold increase in circulating levels of active incretin hormones, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), decreased glucagon concentrations and increased glucose-dependent beta-cell responsiveness, which resulted in higher insulin and C-peptide concentrations. The rise in insulin from pancreatic beta-cells and the decrease in glucagon from pancreatic alpha-cells were associated with lower fasting glucose concentrations and reduced glucose excursion following an oral glucose load or a meal. Saxagliptin improves glycaemic control by reducing fasting and postprandial glucose concentrations in patients with type 2 diabetes.
Metformin is a biguanide with antihyperglycaemic effects, lowering both basal and postprandial plasma glucose. It does not stimulate insulin secretion and therefore does not produce hypoglycaemia.
Metformin may act via three mechanisms:
Metformin stimulates intracellular glycogen synthesis by acting on glycogen synthase. Metformin increases the transport capacity of specific types of membrane glucose transporters (GLUT-1 and GLUT-4).
In humans, independently of its action on glycaemia, metformin has favourable effects on lipid metabolism. This has been shown at therapeutic doses in controlled, medium-term or long-term clinical studies: metformin reduces total cholesterol, LDL-C and triglyceride levels.
The results of bioequivalence studies in healthy subjects demonstrated that metformin/saxagliptin combination tablets are bioequivalent to co-administration of corresponding doses of saxagliptin and metformin hydrochloride as individual tablets.
The following statements reflect the pharmacokinetic properties of the individual active substances of metformin/saxagliptin.
The pharmacokinetics of saxagliptin and its major metabolite were similar in healthy subjects and in patients with type 2 diabetes.
Saxagliptin was rapidly absorbed after oral administration in the fasted state, with maximum plasma concentrations (Cmax) of saxagliptin and its major metabolite attained within 2 and 4 hours (Tmax), respectively. The Cmax and AUC values of saxagliptin and its major metabolite increased proportionally with the increment in the saxagliptin dose, and this dose-proportionality was observed in doses up to 400 mg. Following a 5 mg single oral dose of saxagliptin to healthy subjects, the mean plasma AUC values for saxagliptin and its major metabolite were 78 ng·h/mL and 214 ng·h/mL, respectively. The corresponding plasma Cmax values were 24 ng/mL and 47 ng/mL, respectively. The intra-subject coefficients of variation for saxagliptin Cmax and AUC were less than 12%.
The inhibition of plasma DPP4 activity by saxagliptin for at least 24 hours after oral administration of saxagliptin is due to high potency, high affinity, and extended binding to the active site.
Food had relatively modest effects on the pharmacokinetics of saxagliptin in healthy subjects. Administration with food (a high-fat meal) resulted in no change in saxagliptin Cmax and a 27% increase in AUC compared with the fasted state. The time for saxagliptin to reach Cmax (Tmax) was increased by approximately 0.5 hours with food compared with the fasted state. These changes were not considered to be clinically meaningful.
The in vitro protein binding of saxagliptin and its major metabolite in human serum is negligible. Thus, changes in blood protein levels in various disease states (e.g. renal or hepatic impairment) are not expected to alter the disposition of saxagliptin.
The biotransformation of saxagliptin is primarily mediated by cytochrome P450 3A4/5 (CYP3A4/5). The major metabolite of saxagliptin is also a selective, reversible, competitive DPP4 inhibitor, half as potent as saxagliptin.
The mean plasma terminal half-life (t1/2) values for saxagliptin and its major metabolite are 2.5 hours and 3.1 hours respectively, and the mean t1/2 value for plasma DPP4 inhibition was 26.9 hours. Saxagliptin is eliminated by both renal and hepatic pathways. Following a single 50 mg dose of 14C-saxagliptin, 24%, 36%, and 75% of the dose was excreted in the urine as saxagliptin, its major metabolite, and total radioactivity respectively. The average renal clearance of saxagliptin (~230 mL/min) was greater than the average estimated glomerular filtration rate (~120 mL/min), suggesting some active renal excretion. For the major metabolite, renal clearance values were comparable to estimated glomerular filtration rate. A total of 22% of the administered radioactivity was recovered in faeces representing the fraction of the saxagliptin dose excreted in bile and/or unabsorbed medicinal product from the gastrointestinal tract.
The Cmax and AUC of saxagliptin and its major metabolite increased proportionally to the saxagliptin dose. No appreciable accumulation of either saxagliptin or its major metabolite was observed with repeated once-daily dosing at any dose level. No dose- and time-dependence was observed in the clearance of saxagliptin and its major metabolite over 14 days of once-daily dosing with saxagliptin at doses ranging from 2.5 mg to 400 mg.
A single-dose, open-label study was conducted to evaluate the pharmacokinetics of a 10 mg oral dose of saxagliptin in subjects with varying degrees of chronic renal impairment compared to subjects with normal renal function. The study included patients with renal impairment classified on the basis of creatinine clearance as mild (approximately GFR ≥45 to <90 mL/min), moderate (approximately GFR ≥30 to <45 mL/min), or severe (approximately GFR <30 mL/min) renal impairment. The exposures to saxagliptin were 1.2-, 1.4- and 2.1-fold higher, respectively, and the exposures to BMS-510849 were 1.7-, 2.9- and 4.5-fold higher, respectively, than those observed in subjects with normal renal function.
In subjects with mild (Child-Pugh Class A), moderate (Child-Pugh Class B), or severe (Child-Pugh Class C) hepatic impairment the exposures to saxagliptin were 1.1-, 1.4- and 1.8-fold higher, respectively, and the exposures to BMS-510849 were 22%, 7%, and 33% lower, respectively, than those observed in healthy subjects.
Elderly patients (65-80 years) had about 60% higher saxagliptin AUC than young patients (18-40 years). This is not considered clinically meaningful, therefore, no dose adjustment for this medicinal product is recommended on the basis of age alone.
After an oral dose of metformin, Tmax is reached in 2.5 h. Absolute bioavailability of a 500 mg metformin tablet is approximately 50-60% in healthy subjects. After an oral dose, the non-absorbed fraction recovered in faeces was 20-30%.
After oral administration, metformin absorption is saturable and incomplete. It is assumed that the pharmacokinetics of metformin absorption is non-linear. At the usual metformin doses and dosing schedules, steady-state plasma concentrations are reached within 24-48 h and are generally less than 1 μg/mL. In controlled clinical trials, maximum metformin plasma levels (Cmax) did not exceed 4 μg/mL, even at maximum doses.
Food decreases the extent and slightly delays the absorption of metformin. Following administration of a dose of 850 mg, a 40% lower plasma peak concentration, a 25% decrease in AUC and a 35 min prolongation of time to peak plasma concentration was observed. The clinical relevance of this decrease is unknown.
Plasma protein binding is negligible. Metformin partitions into erythrocytes. The blood peak is lower than the plasma peak and appears at approximately the same time. The red blood cells most likely represent a secondary compartment of distribution. The mean Vd ranged between 63-276 L.
Metformin is excreted unchanged in the urine. No metabolites have been identified in humans.
Renal clearance of metformin is >400 mL/min, indicating that metformin is eliminated by glomerular filtration and tubular secretion. Following an oral dose, the apparent terminal elimination half-life is approximately 6.5 h. When renal function is impaired, renal clearance is decreased in proportion to that of creatinine and thus the elimination half-life is prolonged, leading to increased levels of metformin in plasma.
A 3-month dog study and embryo-foetal development studies in rats and rabbits have been conducted with the combination of saxagliptin and metformin.
Co-administration of saxagliptin and metformin, to pregnant rats and rabbits during the period of organogenesis, was neither embryolethal nor teratogenic in either species when tested at doses yielding systemic exposures (AUC) up to 100 and 10 times the maximum recommended human doses (RHD; 5 mg saxagliptin and 2000 mg metformin), respectively, in rats; and 249 and 1.1 times the RHDs in rabbits. In rats, minor developmental toxicity was limited to an increased incidence of delayed ossification (“wavy ribs”); associated maternal toxicity was limited to weight decrements of 5-6% over the course of gestation days 13 through 18, and related reductions in maternal food consumption. In rabbits, co-administration was poorly tolerated in many mothers, resulting in death, moribundity or abortion. However, among surviving mothers with evaluable litters, maternal toxicity was limited to marginal reductions in body weight over the course of gestation days 21 to 29; and associated developmental toxicity in these litters was limited to foetal body weight decrements of 7%, and a low incidence of delayed ossification of the foetal hyoid.
A 3-month dog study was conducted with the combination of saxagliptin and metformin. No combination toxicity was observed at AUC exposures 68 and 1.5 times the RHDs for saxagliptin and metformin, respectively.
No animal studies have been conducted with the combination of metformin/saxagliptin to evaluate carcinogenesis, mutagenesis, or impairment of fertility. The following data are based on the findings in the studies with saxagliptin and metformin individually.
In cynomolgus monkeys saxagliptin produced reversible skin lesions (scabs, ulcerations and necrosis) in extremities (tail, digits, scrotum and/or nose) at doses ≥3 mg/kg/day. The no effect level (NOEL) for the lesions is 1 and 2 times the human exposure of saxagliptin and the major metabolite respectively, at the recommended human dose (RHD) of 5 mg/day.
The clinical relevance of the skin lesions is not known, however, clinical correlates to skin lesions in monkeys have not been observed in human clinical trials of saxagliptin.
Immune related findings of minimal, nonprogressive, lymphoid hyperplasia in spleen, lymph nodes and bone marrow with no adverse sequelae have been reported in all species tested at exposures starting from 7 times the RHD.
Saxagliptin produced gastrointestinal toxicity in dogs, including bloody/mucoid faeces and enteropathy at higher doses with a NOEL 4 and 2 times the human exposure for saxagliptin and the major metabolite, respectively, at RHD.
Saxagliptin was not genotoxic in a conventional battery of genotoxicity studies in vitro and in vivo. No carcinogenic potential was observed in two-year carcinogenicity assays with mice and rats.
Effects on fertility were observed in male and female rats at high doses producing overt signs of toxicity. Saxagliptin was not teratogenic at any doses evaluated in rats or rabbits. At high doses in rats, saxagliptin caused reduced ossification (a developmental delay) of the foetal pelvis and decreased foetal body weight (in the presence of maternal toxicity), with a NOEL 303 and 30 times the human exposure for saxagliptin and the major metabolite, respectively, at RHD. In rabbits, the effects of saxagliptin were limited to minor skeletal variations observed only at maternally toxic doses (NOEL 158 and 224 times the human exposure for saxagliptin and the major metabolite, respectively at RHD). In a pre- and post-natal developmental study in rats, saxagliptin caused decreased pup weight at maternally toxic doses, with NOEL 488 and 45 times the human exposure for saxagliptin and the major metabolite, respectively at RHD. The effect on offspring body weights were noted until postnatal day 92 and 120 in females and males, respectively.
Preclinical data for metformin reveal no special hazard for humans based on conventional studies of safety pharmacology, repeated dose toxicity, genotoxicity, carcinogenic potential, toxicity to reproduction.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.