Onasemnogene abeparvovec is a gene therapy designed to introduce a functional copy of the survival motor neuron gene (SMN1) in the transduced cells to address the monogenic root cause of the disease. By providing an alternative source of SMN protein expression in motor neurons, it is expected to promote the survival and function of transduced motor neurons.
Onasemnogene abeparvovec is a non-replicating recombinant AAV vector that utilizes AAV9 capsid to deliver a stable, fully functional human SMN transgene. The ability of the AAV9 capsid to cross the blood brain barrier and transduce motor neurons has been demonstrated. The SMN1 gene present in onasemnogene abeparvovec is designed to reside as episomal DNA in the nucleus of transduced cells and is expected to be stably expressed for an extended period of time in post-mitotic cells. The AAV9 virus is not known to cause disease in humans. The transgene is introduced to target cells as a self-complementary double-stranded molecule. Expression of the transgene is driven by a constitutive promoter (cytomegalovirus enhanced chicken-β-actin-hybrid), which results in continuous and sustained SMN protein expression. Proof of the mechanism of action has been supported by nonclinical studies and by human biodistribution data.
Onasemnogene abeparvovec vector shedding studies, which assess the amount of vector eliminated from the body through saliva, urine and faeces were performed.
Onasemnogene abeparvovec was detectable in shedding samples post-infusion. Clearance of onasemnogene abeparvovec was primarily via faeces and the majority is cleared within 30 days after dose administration. Onasemnogene abeparvovec concentrations in urine and saliva were 0.1% to 0.01% of initial concentration in the body at Day 1 post-infusion and dropped thereafter.
Biodistribution was evaluated in 2 patients who died 5.7 months and 1.7 months, respectively, after infusion of onasemnogene abeparvovec at the dose of 1.1 × 1014 vg/kg. Both cases showed that the highest levels of vector DNA were found in the liver. Vector DNA was also detected in the spleen, heart, pancreas, inguinal lymph node, skeletal muscles, peripheral nerves, kidney, lung, intestines, spinal cord, brain, and thymus. Immunostaining for SMN protein showed generalized SMN expression in spinal motor neurons, neuronal and glial cells of the brain, and in the heart, liver, skeletal muscles, and other tissues evaluated.
Following intravenous administration in neonatal mice, vector and transgene were widely distributed with the highest expression generally observed in heart and liver, and substantial expression in the brain and spinal cord. In pivotal 3-month mouse toxicology studies, the main target organs of toxicity identified were the heart and liver. Onasemnogene abeparvovec-related findings in the ventricles of the heart were comprised of dose-related inflammation, oedema and fibrosis. In the atria of the heart, inflammation, thrombosis, myocardial degeneration/necrosis and fibroplasia were observed. Liver findings were comprised of hepatocellular hypertrophy, Kupffer cell activation, and scattered hepatocellular necrosis. A No Adverse Effect Level (NoAEL) was not identified for onasemnogene abeparvovec in mouse studies as ventricular myocardial inflammation/oedema/fibrosis and atrial inflammation were observed at the lowest dose tested (1.5 × 1014 vg/kg). This dose is regarded as the Maximum Tolerated Dose and approximately 1.4-fold the recommended clinical dose. Onasemnogene abeparvovec-related mortality was, in the majority of mice, associated with atrial thrombosis, and observed at 2.4 × 1014 vg/kg. The cause of the mortality in the rest of the animals was undetermined, although microscopic degeneration/regeneration in the hearts of these animals was found.
Genotoxicity, carcinogenicity and reproduction toxicity studies have not been conducted with onasemnogene abeparvovec.
In a toxicology study conducted in young adult non-human primates, administration of a single dose of 3 × 1013 vg/NHP (median dose 1.08 × 1013 vg/kg) onasemnogene abeparvovec intrathecally with Trendelenburg position, without corticosteroid treatment, resulted in minimal to marked mononuclear cell inflammation (primarily lymphocytes) in some dorsal root ganglia from all examined spinal cord levels, with neuronal satellitosis, neuronal necrosis, or complete neuronal loss with rare mineralization. The clinical relevance of this finding is unknown.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.