Panitumumab

Mechanism of action

Panitumumab is a recombinant, fully human IgG2 monoclonal antibody that binds with high affinity and specificity to the human EGFR. EGFR is a transmembrane glycoprotein that is a member of a subfamily of type I receptor tyrosine kinases including EGFR (HER1/c-ErbB-1), HER2, HER3, and HER4. EGFR promotes cell growth in normal epithelial tissues, including the skin and hair follicle, and is expressed on a variety of tumour cells.

Panitumumab binds to the ligand binding domain of EGFR and inhibits receptor autophosphorylation induced by all known EGFR ligands. Binding of panitumumab to EGFR results in internalisation of the receptor, inhibition of cell growth, induction of apoptosis, and decreased interleukin 8 and vascular endothelial growth factor production.

KRAS (Kirsten rat sarcoma 2 viral oncogene homologue) and NRAS (Neuroblastoma RAS viral oncogene homologue) are highly related members of the RAS oncogene family. KRAS and NRAS genes encode small, GTP-binding proteins involved in signal transduction. A variety of stimuli, including that from the EGFR activate KRAS and NRAS which in turn stimulate other intracellular proteins to promote cell proliferation, cell survival and angiogenesis.

Activating mutations in the RAS genes occur frequently in a variety of human tumours and have been implicated in both oncogenesis and tumour progression.

Pharmacodynamic properties

Pharmacodynamic effects

In vitro assays and in vivo animal studies have shown that panitumumab inhibits the growth and survival of tumour cells expressing EGFR. No anti-tumour effects of panitumumab were observed in human tumour xenografts lacking EGFR expression. The addition of panitumumab to radiation, chemotherapy or other targeted therapeutic agents, in animal studies resulted in an increase in antitumour effects compared to radiation, chemotherapy or targeted therapeutic agents alone.

Dermatological reactions (including nail effects), observed in patients treated with panitumumab or other EGFR inhibitors, are known to be associated with the pharmacologic effects of therapy.

Immunogenicity

As with all therapeutic proteins, there is potential for immunogenicity. Data on the development of anti-panitumumab antibodies has been evaluated using two different screening immunoassays for the detection of binding anti-panitumumab antibodies (an ELISA which detects high-affinity antibodies, and a Biosensor Immunoassay which detects both high and low-affinity antibodies). For patients whose sera tested positive in either screening immunoassay, an in vitro biological assay was performed to detect neutralising antibodies.

As monotherapy:

  • The incidence of binding antibodies (excluding predose and transient positive patients) was <1% as detected by the acid-dissociation ELISA and 3.8% as detected by the Biacore assay;
  • The incidence of neutralising antibodies (excluding predose and transient positive patients) was <1%;
  • Compared with patients who did not develop antibodies, no relationship between the presence of anti-panitumumab antibodies and pharmacokinetics, efficacy and safety has been observed.

In combination with irinotecan- or oxaliplatin-based chemotherapy:

  • The incidence of binding antibodies (excluding predose positive patients) was 1% as detected by the acid-dissociation ELISA and <1% as detected by the Biacore assay;
  • The incidence of neutralising antibodies (excluding predose positive patients) was <1%;
  • No evidence of an altered safety profile was found in patients who tested positive for antibodies to panitumumab.

The detection of antibody formation is dependent on the sensitivity and specificity of the assay. The observed incidence of antibody positivity in an assay may be influenced by several factors including assay methodology, sample handling, timing of sample collection, concomitant medicinal products and underlying disease, therefore, comparison of the incidence of antibodies to other products may be misleading.

Pharmacokinetic properties

Panitumumab administered as a single agent or in combination with chemotherapy exhibits nonlinear pharmacokinetics.

Following a single-dose administration of panitumumab as a 1-hour infusion, the area under the concentration-time curve (AUC) increased in a greater than dose-proportional manner and clearance (CL) of panitumumab decreased from 30.6 to 4.6 mL/day/kg as the dose increased from 0.75 to 9 mg/kg. However, at doses above 2 mg/kg, the AUC of panitumumab increases in an approximately dose-proportional manner.

Following the recommended dose regimen (6 mg/kg given once every 2 weeks as a 1-hour infusion), panitumumab concentrations reached steady-state levels by the third infusion with mean (± Standard Deviation [SD]) peak and trough concentrations of 213 ± 59 and 39 ± 14 mcg/mL, respectively. The mean (± SD) AUC0-tau and CL were 1,306 ± 374 mcg•day/mL and 4.9 ± 1.4 mL/kg/day, respectively. The elimination half-life was approximately 7.5 days (range: 3.6 to 10.9 days).

A population pharmacokinetic analysis was performed to explore the potential effects of selected covariates on panitumumab pharmacokinetics. Results suggest that age (21-88), gender, race, hepatic function, renal function, chemotherapeutic agents, and EGFR membrane staining intensity (1+, 2+, 3+) in tumour cells had no apparent impact on the pharmacokinetics of panitumumab.

No clinical studies have been conducted to examine the pharmacokinetics of panitumumab in patients with renal or hepatic impairment.

Preclinical safety data

Adverse reactions seen in animals at exposure levels similar to clinical exposure levels and with possible relevance to clinical use were as follows:

Skin rash and diarrhoea were the major findings observed in repeat-dose toxicity studies of up to 26 weeks duration in cynomolgus monkeys. These findings were observed at doses approximately equivalent to the recommended human dose and were reversible upon termination of administration of panitumumab. The skin rash and diarrhoea observed in monkeys are considered related to the pharmacological action of panitumumab and are consistent with the toxicities observed with other anti-EGFR inhibitors.

Studies to evaluate the mutagenic and carcinogenic potential of panitumumab have not been performed.

Animal studies are insufficient with respect to embryo-foetal development since foetal panitumumab exposure levels were not examined. Panitumumab has been shown to cause foetal abortions and/or foetal deaths in cynomolgus monkeys when administered during the period of organogenesis at doses approximately equivalent to the recommended human dose.

Formal male fertility studies have not been conducted; however, microscopic evaluation of male reproductive organs from repeat-dose toxicity studies in cynomolgus monkeys at doses up to approximately 5-fold the human dose on a mg/kg basis, revealed no differences compared to control male monkeys. Fertility studies conducted in female cynomolgus monkeys showed that panitumumab may produce prolonged menstrual cycle and/or amenorrhea and reduced pregnancy rate which occurred at all doses evaluated.

No pre- and post-natal development animal studies have been conducted with panitumumab. All patients should be advised regarding the potential risk of panitumumab on pre- and post-natal development prior to initiation of panitumumab therapy.

Related medicines

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.