Perampanel

Chemical formula: C₂₃H₁₅N₃O  Molecular mass: 349.393 g/mol  PubChem compound: 9924495

Mechanism of action

Perampanel is a first-in-class selective, non-competitive antagonist of the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor on post-synaptic neurons. Glutamate is the primary excitatory neurotransmitter in the central nervous system and is implicated in a number of neurological disorders caused by neuronal overexcitation. Activation of AMPA receptors by glutamate is thought to be responsible for most fast excitatory synaptic transmission in the brain. In in vitro studies, perampanel did not compete with AMPA for binding to the AMPA receptor, but perampanel binding was displaced by noncompetitive AMPA receptor antagonists, indicating that perampanel is a noncompetitive AMPA receptor antagonist. In vitro, perampanel inhibited AMPA-induced (but not NMDA-induced) increase in intracellular calcium. In vivo, perampanel significantly prolonged seizure latency in an AMPA-induced seizure model.

The precise mechanism by which perampanel exerts its antiepileptic effects in humans remains to be fully elucidated.

Pharmacodynamic properties

Pharmacodynamic effects

A pharmacokinetic-pharmacodynamic (efficacy) analysis was performed based on the pooled data from the 3 efficacy trials for partial-onset seizures. In addition, a pharmacokinetic-pharmacodynamic (efficacy) analysis was performed in one efficacy trial for primary generalised tonic-clonic seizures. In both analyses, perampanel exposure is correlated with reduction in seizure frequency.

Psychomotor performance

Single and multiple doses of 8 mg and 12 mg impaired psychomotor performance in healthy volunteers in a dose-related manner. The effects of perampanel on complex tasks such as driving ability were additive or supra-additive to the impairment effects of alcohol. Psychomotor performance testing returned to baseline within 2 weeks of cessation of perampanel dosing.

Cognitive function

In a healthy volunteer study to assess the effects of perampanel on alertness, and memory using a standard battery of assessments, no effects of perampanel were found following single and multiple doses of perampanel up to 12 mg/day.

In a placebo controlled study conducted in adolescent patients, no significant changes in cognition relative to placebo as measured by Cognitive Drug Research (CDR) System Global Cognition Score were observed for perampanel. In the open label extension, no significant changes were observed in global CDR system score after 52 weeks of perampanel treatment.

Alertness and mood

Levels of alertness (arousal) decreased in a dose-related manner in healthy subjects dosed with perampanel from 4 to 12 mg/day. Mood deteriorated following dosing of 12 mg/day only; the changes in mood were small and reflected a general lowering of alertness. Multiple dosing of perampanel 12 mg/day also enhanced the effects of alcohol on vigilance and alertness, and increased levels of anger, confusion and depression as assessed using the Profile of Mood State 5-point rating scale.

Cardiac electrophysiology

Perampanel did not prolong the QTc interval when administered in daily doses up to 12 mg/day, and did not have a dose-related or clinically important effect on QRS duration.

Pharmacokinetic properties

The pharmacokinetics of perampanel have been studied in healthy adult subjects (age range 18 to 79), adults and adolescents with partial-onset seizures and primary generalised tonic-clonic seizures, adults with Parkinson’s disease, adults with diabetic neuropathy, adults with multiple sclerosis, and subjects with hepatic impairment.

Absorption

Perampanel is readily absorbed after oral administration with no evidence of marked first-pass metabolism. Co-administration of perampanel tablets with a high fat meal had no impact on the peak plasma exposure (Cmax) or total exposure (AUC0-inf) of perampanel. The tmax was delayed by approximately 1 hour compared to that under fasted conditions.

Distribution

Data from in vitro studies indicate that perampanel is approximately 95% bound to plasma proteins.

In vitro studies show that perampanel is not a substrate or significant inhibitor of organic anion transporting polypeptides (OATP) 1B1 and 1B3, organic anion transporters (OAT) 1, 2, 3, and 4, organic cation transporters (OCT) 1, 2, and 3, and the efflux transporters P-glycoprotein and Breast Cancer Resistance Protein (BCRP).

Biotransformation

Perampanel is extensively metabolised via primary oxidation and sequential glucuronidation. The metabolism of perampanel is mediated primarily by CYP3A based on clinical study results in healthy subjects administered radiolabeled perampanel and supported by in vitro studies using recombinant human CYPs and human liver microsomes.

Following administration of radiolabeled perampanel, only trace amounts of perampanel metabolites were observed in plasma.

Elimination

Following administration of a radiolabeled perampanel dose to either 8 healthy adults or elderly subjects, approximately 30% of recovered radioactivity was found in the urine and 70% in the faeces. In urine and faeces, recovered radioactivity was primarily composed of a mixture of oxidative and conjugated metabolites. In a population pharmacokinetic analysis of pooled data from 19 Phase 1 studies, the average t½ of perampanel was 105 hours. When dosed in combination with the strong CYP3A inducer carbamazepine, the average t½was 25 hours.

Linearity/non-linearity

In healthy subjects, plasma concentrations of perampanel increased in direct proportion to administered doses over the range of 2 to 12 mg. In a population pharmacokinetic analysis of patients with partial-onset seizures receiving perampanel up to 12 mg/day and patients with primary generalised tonic-clonic seizures receiving perampanel up to 8 mg/day in placebo-controlled clinical trials, a linear relationship was found between dose and perampanel plasma concentrations.

Special populations

Hepatic impairment The pharmacokinetics of perampanel following a single 1 mg dose were evaluated in 12 subjects with mild and moderate hepatic impairment (Child-Pugh A and B, respectively) compared with 12 healthy, demographically matched subjects. The mean apparent clearance of unbound perampanel in mildly impaired subjects was 188 ml/min vs. 338 ml/min in matched controls, and in moderately impaired subjects was 120 ml/min vs. 392 ml/min in matched controls. The t½ was longer in mildly impaired (306 h vs. 125 h) and moderately impaired (295 h vs. 139 h) subjects compared to matched healthy subjects.

Renal impairment

The pharmacokinetics of perampanel have not been formally evaluated in patients with renal impairment. Perampanel is eliminated almost exclusively by metabolism followed by rapid excretion of metabolites; only trace amounts of perampanel metabolites are observed in plasma. In a population pharmacokinetic analysis of patients with partial-onset seizures having creatinine clearances ranging from 39 to 160 mL/min and receiving perampanel up to 12 mg/day in placebo-controlled clinical trials, perampanel clearance was not influenced by creatinine clearance. In a population pharmacokinetic analysis of patients with primary generalised tonic-clonic seizures receiving perampanel up to 8 mg/day in a placebo-controlled clinical study, perampanel clearance was not influenced by baseline creatinine clearance.

Gender

In a population pharmacokinetic analysis of patients with partial-onset seizures receiving perampanel up to 12 mg/day and patients with primary generalised tonic-clonic seizures receiving perampanel up to 8 mg/day in placebo-controlled clinical trials, perampanel clearance in females (0.54 l/h) was 18% lower than in males (0.66 l/h).

Elderly (65 years of age and above)

In a population pharmacokinetic analysis of patients with partial-onset seizures (age range 12 to 74 years) and primary generalised tonic-clonic seizures (age range 12 to 58 years), and receiving perampanel up to 8 or 12 mg/day in placebo-controlled clinical trials, no significant effect of age on perampanel clearance was found. A dose adjustment in the elderly is not considered to be necessary.

Paediatric population

In a population pharmacokinetic analysis of the adolescent patients pooled from the Phase 2 and 3 clinical studies, there were no notable differences between this population and the overall population.

Drug interaction studies

In vitro assessment of drug interactions

Drug metabolising enzyme inhibition: In human liver microsomes, perampanel (30 µmol/l) had a weak inhibitory effect on CYP2C8 and UGT1A9 among major hepatic CYPs and UGTs.

Drug metabolising enzyme induction: Compared with positive controls (including phenobarbital, rifampicin), perampanel was found to weakly induce CYP2B6 (30 µmol/l) and CYP3A4/5 (≥3 µmol/l) among major hepatic CYPs and UGTs in cultured human hepatocytes.

Preclinical safety data

Adverse reactions not observed in clinical studies, but seen in animals at exposure levels similar to clinical exposure levels and with possible relevance to clinical use were as follows:

In the fertility study in rats, prolonged and irregular oestrous cycles were observed at the maximum tolerated dose (30 mg/kg) in females; however, these changes did not affect fertility and early embryonic development. There were no effects on male fertility.

The excretion into breast milk was measured in rats at 10 days post-partum. Levels peaked at one hour and were 3.65 times the levels in plasma.

In a pre- and postnatal development toxicity study in rats, abnormal delivery and nursing conditions were observed at maternally toxic doses, and the number of stillbirths was increased in offspring. Behavioural and reproductive development of the offspring was not affected, but some parameters of physical development showed some delay, which is probably secondary to the pharmacology-based CNS effects of perampanel. The placental transfer was relatively low; 0.09% or less of administered dose was detected in the foetus.

Nonclinical data reveal that perampanel was not genotoxic and had no carcinogenic potential. The administration of maximum tolerated doses to rats and monkeys resulted in pharmacologically-based CNS clinical signs and decreased terminal body weight. There were no changes directly attributable to perampanel in clinical pathology or histopathology.

Related medicines

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.