Chemical formula: C₁₃H₁₁N₃O₄ Molecular mass: 273.244 g/mol PubChem compound: 134780
Pomalidomide has direct anti-myeloma tumoricidal activity, immunomodulatory activities and inhibits stromal cell support for multiple myeloma tumour cell growth. Specifically, pomalidomide inhibits proliferation and induces apoptosis of haematopoietic tumour cells. Additionally, pomalidomide inhibits the proliferation of lenalidomide-resistant multiple myeloma cell lines and synergises with dexamethasone in both lenalidomide-sensitive and lenalidomide-resistant cell lines to induce tumour cell apoptosis. Pomalidomide enhances T cell- and natural killer (NK) cell-mediated immunity and inhibits production of pro-inflammatory cytokines (e.g., TNF-α and IL-6) by monocytes. Pomalidomide also inhibits angiogenesis by blocking the migration and adhesion of endothelial cells.
Pomalidomide binds directly to the protein cereblon (CRBN), which is part of an E3 ligase complex that includes deoxyribonucleic acid (DNA) damage-binding protein 1(DDB1), cullin 4 (CUL4), and regulator of cullins-1 (Roc1), and can inhibit the auto-ubiquitination of CRBN within the complex. E3 ubiquitin ligases are responsible for the poly-ubiquitination of a variety of substrate proteins, and may partially explain the pleiotropic cellular effects observed with pomalidomide treatment.
In the presence of pomalidomide in vitro, substrate proteins Aiolos and Ikaros are targeted for ubiquitination and subsequent degradation leading to direct cytotoxic and immunomodulatory effects. In vivo, pomalidomide therapy led to reduction in the levels of Ikaros in patients with relapsed lenalidomide- refractory multiple myeloma.
Pomalidomide is absorbed with a maximum plasma concentration (Cmax) occurring between 2 and 3 hours and is at least 73% absorbed following administration of single oral dose. The systemic exposure (AUC) of pomalidomide increases in an approximately linear and dose proportional manner. Following multiple doses, pomalidomide has an accumulation ratio of 27 to 31% on AUC.
Coadministration with a high-fat and high-calorie meal slows the rate of absorption, decreasing mean plasma Cmax by approximately 27%, but has minimal effect on the overall extent of absorption with an 8% decrease in mean AUC. Therefore, pomalidomide can be administered without regard to food intake.
Pomalidomide has a mean apparent volume of distribution (Vd/F) between 62 and 138 L at steady state. Pomalidomide is distributed in semen of healthy subjects at a concentration of approximately 67% of plasma level at 4 hours post-dose (approximately Tmax) after 4 days of once daily dosing at 2 mg. In vitro binding of pomalidomide enantiomers to proteins in human plasma ranges from 12% to 44% and is not concentration dependent.
Pomalidomide is the major circulating component (approximately 70% of plasma radioactivity) in vivo in healthy subjects who received a single oral dose of [14C]-pomalidomide (2 mg). No metabolites were present at >10% relative to parent or total radioactivity in plasma.
The predominant metabolic pathways of excreted radioactivity are hydroxylation with subsequent glucuronidation, or hydrolysis. In vitro, CYP1A2 and CYP3A4 were identified as the primary enzymes involved in the CYP-mediated hydroxylation of pomalidomide, with additional minor contributions from CYP2C19 and CYP2D6. Pomalidomide is also a substrate of P-glycoprotein in vitro. Co-administration of pomalidomide with the strong CYP3A4/5 and P-gp inhibitor ketoconazole, or the strong CYP3A4/5 inducer carbamazepine, had no clinically relevant effect on exposure to pomalidomide. Co-administration of the strong CYP1A2 inhibitor fluvoxamine with pomalidomide in the presence of ketoconazole, increased mean exposure to pomalidomide by 107% with a 90% confidence interval [91% to 124%] compared to pomalidomide plus ketoconazole. In a second study to evaluate the contribution of a CYP1A2 inhibitor alone to metabolism changes, co-administration of fluvoxamine alone with pomalidomide increased mean exposure to pomalidomide by 125% with a 90% confidence interval [98% to 157%] compared to pomalidomide alone. If strong inhibitors of CYP1A2 (e.g. ciprofloxacin, enoxacin and fluvoxamine) are co-administered with pomalidomide, reduce the dose of pomalidomide to 50%. Administration of pomalidomide in smokers, with smoking tobacco known to induce the CYP1A2 isoform, had no clinically relevant effect on exposure to pomalidomide compared to that exposure to pomalidomide observed in non-smokers.
Based on in vitro data, pomalidomide is not an inhibitor or inducer of cytochrome P-450 isoenzymes, and does not inhibit any drug transporters that were studied. Clinically relevant drug-drug interactions are not anticipated when pomalidomide is coadministered with substrates of these pathways.
Pomalidomide is eliminated with a median plasma half-life of approximately 9.5 hours in healthy subjects and approximately 7.5 hours in patients with multiple myeloma. Pomalidomide has a mean total body clearance (CL/F) of approximately 7-10 L/hr.
Following a single oral administration of [14C]-pomalidomide (2 mg) to healthy subjects, approximately 73% and 15% of the radioactive dose was eliminated in urine and faeces, respectively, with approximately 2% and 8% of the dosed radiocarbon eliminated as pomalidomide in urine and faeces.
Pomalidomide is extensively metabolised prior to excretion, with the resulting metabolites eliminated primarily in the urine. The 3 predominant metabolites in urine (formed via hydrolysis or hydroxylation with subsequent glucuronidation) account for approximately 23%, 17%, and 12%, respectively, of the dose in the urine.
CYP dependent metabolites account for approximately 43% of the total excreted radioactivity, while non-CYP dependent hydrolytic metabolites account for 25%, and excretion of unchanged pomalidomide accounted for 10% (2% in urine and 8% in faeces).
Based on population PK analysis using a two-compartment model, healthy subjects and MM patients had comparable apparent clearance (CL/F) and apparent central volume of distribution (V2/F). In peripheral tissues, pomalidomide was preferentially taken up by tumors with apparent peripheral distribution clearance (Q/F) and apparent peripheral volume of distribution (V3/F) 3.7-fold and 8-fold higher, respectively, than that of healthy subjects.
No data are available on administration of pomalidomide to paediatric patients (<18 years of age).
Based on population pharmacokinetic analyses in healthy subjects and multiple myeloma patients, no significant influence of age (19-83 years) on oral clearance of pomalidomide was observed. In clinical studies, no dose adjustment was required in elderly (> 65 years) patients exposed to pomalidomide.
Population pharmacokinetic analyses showed that the pomalidomide pharmacokinetic parameters were not remarkably affected in renally impaired patients (defined by creatinine clearance or estimated glomerular filtration rate [eGFR]) compared to patients with normal renal function (CrCl ≥60 mL/minute). Mean normalised AUC exposure to pomalidomide was 98.2% with a 90% confidence interval [77.4% to 120.6%] in moderate renal impairment patients (eGFR ≥30 to ≤45 mL/minute/1.73 m²) compared to patients with normal renal function. Mean normalised AUC exposure to pomalidomide was 100.2% with a 90% confidence interval [79.7% to 127.0%] in severe renal impairment patients not requiring dialysis (CrCl <30 or eGFR <30 mL/minute/1.73 m²) compared to patients with normal renal function. Mean normalised AUC exposure to pomalidomide increased by 35.8% with a 90% CI [7.5% to 70.0%] in severe renal impairment patients requiring dialysis (CrCl <30mL/minute requiring dialysis) compared to patients with normal renal function. The mean changes in exposure to pomalidomide in each of these renal impairment groups are not of a magnitude that requires dosage adjustments.
The pharmacokinetic parameters were modestly changed in hepatically impaired patients (defined by Child-Pugh criteria) compared to healthy subjects. Mean exposure to pomalidomide increased by 51% with a 90% confidence interval [9% to 110%] in mildly hepatically impaired patients compared to healthy subjects. Mean exposure to pomalidomide increased by 58% with a 90% confidence interval [13% to 119%] in moderately hepatically impaired patients compared to healthy subjects. Mean exposure to pomalidomide increased by 72% with a 90% confidence interval [24% to 138%] in severely hepatically impaired patients compared to healthy subjects. The mean increases in exposure to pomalidomide in each of these impairment groups are not of a magnitude for which adjustments in schedule or dose are required.
In rats, chronic administration of pomalidomide at doses of 50, 250, and 1000 mg/kg/day for 6 months was well tolerated. No adverse findings were noted up to 1000 mg/kg/day (175-fold exposure ratio relative to a 4 mg clinical dose).
In monkeys, pomalidomide was evaluated in repeat-dose studies of up to 9 months in duration. In these studies, monkeys exhibited greater sensitivity to pomalidomide effects than rats. The primary toxicities observed in monkeys were associated with the haematopoietic/lymphoreticular systems. In the 9-month study in monkeys with doses of 0.05, 0.1, and 1 mg/kg/day, morbidity and early euthanasia of 6 animals were observed at the dose of 1 mg/kg/day and were attributed to immunosuppressive effects (staphylococcal infection, decreased peripheral blood lymphocytes, chronic inflammation of the large intestine, histologic lymphoid depletion, and hypocellularity of bone marrow) at high exposures of pomalidomide (15-fold exposure ratio relative to a 4 mg clinical dose). These immunosuppressive effects resulted in early euthanasia of 4 monkeys due to poor health condition (watery stool, inappetence, reduced food intake, and weight loss); histopathologic evaluation of these animals showed chronic inflammation of the large intestine and villous atrophy of the small intestine. Staphylococcal infection was observed in 4 monkeys; 3 of these animals responded to antibiotic treatment and 1 died without treatment. In addition, findings consistent with acute myelogenous leukemia led to euthanasia of 1 monkey; clinical observations and clinical pathology and/or bone marrow alterations observed in this animal were consistent with immunosuppression. Minimal or mild bile duct proliferation with associated increases in ALP and GGT were also observed at 1 mg/kg/day. Evaluation of recovery animals indicated that all treatment-related findings were reversible after 8 weeks of dosing cessation, except for proliferation of intrahepatic bile ducts observed in 1 animal in the 1 mg/kg/day group. The No Observed Adverse Effect Level (NOAEL) was 0.1 mg/kg/day (0.5-fold exposure ratio relative to a 4 mg clinical dose).
Pomalidomide was not mutagenic in bacterial and mammalian mutation assays, and did not induce chromosomal aberrations in human peripheral blood lymphocytes or micronuclei formation in polychromatic erythrocytes in bone marrow of rats administered doses up to 2000 mg/kg/day. Carcinogenicity studies have not been conducted.
In a fertility and early embryonic development study in rats, pomalidomide was administered to males and females at dosages of 25, 250, and 1000 mg/kg/day. Uterine examination on Gestation Day 13 showed a decrease in mean number of viable embryos and an increase in postimplantation loss at all dosage levels. Therefore, the NOAEL for these observed effects was <25 mg/kg/day (AUC24h was 39960 ng•h/mL (nanogram•hour/millilitres) at this lowest dose tested, and the exposure ratio was 99-fold relative to a 4 mg clinical dose). When treated males on this study were mated with untreated females, all uterine parameters were comparable to the controls. Based on these results, the observed effects were attributed to the treatment of females.
Pomalidomide was found to be teratogenic in both rats and rabbits when administered during the period of major organogenesis. In the rat embryofoetal developmental toxicity study, malformations of absence of urinary bladder, absence of thyroid gland, and fusion and misalignment of lumbar and thoracic vertebral elements (central and/or neural arches) were observed at all dosage levels (25, 250, and 1000 mg/kg/day).
There was no maternal toxicity observed in this study. Therefore, the maternal NOAEL was 1000 mg/kg/day, and the NOAEL for developmental toxicity was <25 mg/kg/day (AUC24h was 34340 ng•h/mL on Gestation Day 17 at this lowest dose tested, and the exposure ratio was 85-fold relative to a 4 mg clinical dose). In rabbits, pomalidomide at dosages ranging from 10 to 250 mg/kg produced embryo-foetal developmental malforma tions. Increased cardiac anomalies were seen at all doses with significant increases at 250 mg/kg/day. At 100 and 250 mg/kg/day, there were slight increases in post-implantation loss and slight decreases in fetal body weights. At 250 mg/kg/day, fetal malformations included limb anomalies (flexed and/or rotated fore- and/or hindlimbs, unattached or absent digit) and associated skeletal malformations (not ossified metacarpal, misaligned phalanx and metacarpal, absent digit, not ossified phalanx, and short not ossified or bent tibia); moderate dilation of the lateral ventricle in the brain; abnormal placement of the right subclavian artery; absent intermediate lobe in the lungs; low-set kidney; altered liver morphology; incompletely or not ossified pelvis; an increased average for supernumerary thoracic ribs and a reduced average for ossified tarsals. Slight reduction in maternal body weight gain, significant reduction in triglycerides, and significant dec rease in absolute and relative spleen weights were observed at 100 and 250 mg/kg/day. The maternal NOAEL was 10 mg/kg/day, and the developmental NOAEL was <10 mg/kg/day (AUC24h was 418 ng•h/mL on Gestation Day 19 at this lowest dose tested, which was similar to that obtained from a 4 mg clinical dose).
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.