Fluticasone furoate and vilanterol represent two classes of medications (a synthetic corticosteroid and a selective, long-acting beta2-receptor agonist).
Fluticasone furoate is a synthetic trifluorinated corticosteroid with potent anti-inflammatory activity. The precise mechanism through which fluticasone furoate affects asthma and COPD symptoms is not known. Corticosteroids have been shown to have a wide range of actions on multiple cell types (e.g. eosinophils, macrophages, lymphocytes) and mediators (e.g. cytokines and chemokines involved in inflammation).
Vilanterol trifenatate is a selective long-acting, beta2-adrenergic agonist (LABA). The pharmacologic effects of beta2-adrenoceptor agonist active substances, including vilanterol trifenatate, are at least in part attributable to stimulation of intracellular adenylate cyclase, the enzyme that catalyzes the conversion of adenosine triphosphate (ATP) to cyclic-3',5'-adenosine monophosphate (cyclic AMP). Increased cyclic AMP levels cause relaxation of bronchial smooth muscle and inhibition of release of mediators of immediate hypersensitivity from cells, especially from mast cells.
Molecular interactions occur between corticosteroids and LABAs, whereby steroids activate the beta2-receptor gene, increasing receptor number and sensitivity and LABAs prime the glucocorticoid receptor for steroid-dependent activation and enhance cell nuclear translocation. These synergistic interactions are reflected in enhanced anti-inflammatory activity, which has been demonstrated in vitro and in vivo in a range of inflammatory cells relevant to the pathophysiology of both asthma and COPD. In peripheral blood mononuclear cells from subjects with COPD, a larger anti-inflammatory effect was seen in the presence of the combination of fluticasone furoate/vilanterol compared with fluticasone furoate alone at concentrations achieved with clinical doses. The enhanced antiinflammatory effect of the LABA component was similar to that obtained with other ICS/LABA combinations.
The absolute bioavailability for fluticasone furoate and vilanterol when administered by inhalation as fluticasone furoate/vilanterol was on average 15.2% and 27.3%, respectively. The oral bioavailability of both fluticasone furoate and vilanterol was low, on average 1.26% and <2%, respectively. Given this low oral bioavailability, systemic exposure for fluticasone furoate and vilanterol following inhaled administration is primarily due to absorption of the inhaled portion of the dose delivered to the lung.
Following intravenous dosing, both fluticasone furoate and vilanterol are extensively distributed with average volumes of distribution at steady state of 661 L and 165 L, respectively.
Both fluticasone furoate and vilanterol have a low association with red blood cells. In vitro plasma protein binding in human plasma of fluticasone furoate and vilanterol was high, on average >99.6% and 93.9%, respectively. There was no decrease in the extent of in vitro plasma protein binding in subjects with renal or hepatic impairment.
Fluticasone furoate and vilanterol are substrates for P-glycoprotein (P-gp), however, concomitant administration of fluticasone furoate/vilanterol with P-gp inhibitors is considered unlikely to alter fluticasone furoate or vilanterol systemic exposure since they are both well absorbed molecules.
Based on in vitro data, the major routes of metabolism of both fluticasone furoate and vilanterol in human are mediated primarily by CYP3A4.
Fluticasone furoate is primarily metabolised through hydrolysis of the S-fluoromethyl carbothioate group to metabolites with significantly reduced corticosteroid activity. Vilanterol is primarily metabolised by O-dealkylation to a range of metabolites with significantly reduced β1- and β2-agonist activity.
Following oral administration, fluticasone furoate was eliminated in humans mainly by metabolism with metabolites being excreted almost exclusively in faeces, with <1% of the recovered radioactive dose eliminated in the urine.
Following oral administration, vilanterol was eliminated mainly by metabolism followed by excretion of metabolites in urine and faeces approximately 70% and 30% of the radioactive dose respectively in a human radiolabel study conducted by the oral route. The apparent plasma elimination half-life of vilanterol following single inhaled administration of fluticasone furoate/vilanterol was, on average, 2.5 hours. The effective half-life for accumulation of vilanterol, as determined from inhalation administration of repeat doses of vilanterol 25 micrograms, is 16.0 hours in subjects with asthma and 21.3 hours in subjects with COPD.
In adolescents (12 years or older), there are no recommended dose modifications.
The pharmacokinetics, safety and efficacy of fluticasone furoate/vilanterol have been studied in children from 5 to 11 years old, but no recommendation on a posology can be made. The pharmacokinetics, safety and efficacy of fluticasone furoate/vilanterol in children under the age of 5 years have not been established.
The effects of age on the pharmacokinetics of fluticasone furoate and vilanterol were determined in phase III studies in COPD and asthma. There was no evidence for age (12 to 84 years) to affect the pharmacokinetics of fluticasone furoate and vilanterol in subjects with asthma.
There was no evidence for age to affect the pharmacokinetics of fluticasone furoate in subjects with COPD while there was an increase (37%) in AUC(0-24) of vilanterol over the observed age range of 41 to 84 years. For an elderly subject (aged 84 years) with low bodyweight (35 kg) vilanterol AUC(0-24) is predicted to be 35% higher than the population estimate (subject with COPD aged 60 years and bodyweight of 70 kg), whilst Cmax was unchanged. These differences are unlikely to be of clinical relevance.
In elderly subjects with asthma and elderly subjects with COPD there are no recommended dose modifications.
A clinical pharmacology study of fluticasone furoate/vilanterol showed that severe renal impairment (creatinine clearance <30 mL/min) did not result in significantly greater exposure to fluticasone furoate or vilanterol or more marked corticosteroid or beta2-agonist systemic effects compared with healthy subjects.
No dose adjustment is required for patients with renal impairment.
The effects of haemodialysis have not been studied.
Following repeat dosing of fluticasone furoate/vilanterol for 7 days, there was an increase in fluticasone furoate systemic exposure (up to three-fold as measured by AUC(0–24)) in subjects with hepatic impairment (Child-Pugh A, B or C) compared with healthy subjects. The increase in fluticasone furoate systemic exposure in subjects with moderate hepatic impairment (Child-Pugh B; fluticasone furoate/vilanterol 184/22 micrograms) was associated with an average 34% reduction in serum cortisol compared with healthy subjects. Dose-normalised fluticasone furoate systemic exposure was similar in subjects with moderate and severe hepatic impairment (Child-Pugh B or C).
Following repeat dosing of fluticasone furoate/vilanterol for 7 days, there was no significant increase in systemic exposure to vilanterol (Cmax and AUC) in subjects with mild, moderate, or severe hepatic impairment (Child-Pugh A, B or C).
There were no clinically relevant effects of the fluticasone furoate/vilanterol combination on betaadrenergic systemic effects (heart rate or serum potassium) in subjects with mild or moderate hepatic impairment (vilanterol, 22 micrograms) or with severe hepatic impairment (vilanterol, 12.5 micrograms) compared with healthy subjects.
In subjects with asthma, estimates of fluticasone furoate AUC(0-24) for East Asian, Japanese and South East Asian subjects (12-13% of subjects) were on average 33% to 53% higher compared with other racial groups. However, there was no evidence for the higher systemic exposure in this population to be associated with greater effect on 24 hour urinary cortisol excretion. On average, vilanterol Cmax is predicted to be 220 to 287% higher and AUC(0-24) comparable for those subjects from an Asian heritage compared with subjects from other racial groups. However, there was no evidence that this higher vilanterol Cmax resulted in clinically significant effects on heart rate.
In subjects with COPD estimates of fluticasone furoate AUC(0-24) for East Asian, Japanese and South East Asian subjects (13-14% subjects) were on average 23% to 30% higher compared with Caucasian subjects. However, there was no evidence for the higher systemic exposure in this population to be associated with greater effect on 24 hour urinary cortisol excretion. There was no effect of race on pharmacokinetic parameter estimates of vilanterol in subjects with COPD.
There was no evidence for gender, weight or BMI (body mass index) to influence the pharmacokinetics of fluticasone furoate based on a population pharmacokinetic analysis of phase III data in 1213 subjects with asthma (712 females) and 1225 subjects with COPD (392 females).
There was no evidence for gender, weight or BMI to influence the pharmacokinetics of vilanterol based on a population pharmacokinetic analysis in 856 subjects with asthma (500 females) and 1091 subjects with COPD (340 females).
No dosage adjustment is necessary based on gender, weight or BMI.
Pharmacological and toxicological effects seen with fluticasone furoate or vilanterol in non-clinical studies were those typically associated with either glucocorticoids or beta2-agonists. Administration of fluticasone furoate combined with vilanterol did not result in any significant new toxicity.
Fluticasone furoate was not genotoxic in a standard battery of studies and was not carcinogenic in lifetime inhalation studies in rats or mice at exposures similar to those at the maximum recommended human dose, based on AUC.
In genetic toxicity studies, vilanterol (as alpha-phenylcinnamate) and triphenylacetic acid were not genotoxic indicating that vilanterol (as trifenatate) does not represent a genotoxic hazard to humans.
Consistent with findings for other beta2 agonists, in lifetime inhalation studies vilanterol trifenatate caused proliferative effects in the female rat and mouse reproductive tract and rat pituitary gland. There was no increase in tumour incidence in rats or mice at exposures 1.2- or 30-fold, respectively, those at the maximum recommended human dose, based on AUC.
Effects seen following inhalation administration of fluticasone furoate in combination with vilanterol in rats were similar to those seen with fluticasone furoate alone.
Fluticasone furoate was not teratogenic in rats or rabbits, but delayed development in rats and caused abortion in rabbits at maternally toxic doses. There were no effects on development in rats at exposures approximately 3-times greater than those at the maximum recommended human dose, based on AUC.
Vilanterol trifenatate was not teratogenic in rats. In inhalation studies in rabbits, vilanterol trifenatate caused effects similar to those seen with other beta2 agonists (cleft palate, open eyelids, sternebral fusion and limb flexure/malrotation). When given subcutaneously there were no effects at exposures 84-times greater than those at the maximum recommended human dose, based on AUC.
Neither fluticasone furoate nor vilanterol trifenatate had any adverse effects on fertility or pre- and post-natal development in rats.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.