Zovirax Intravenous injection Ref.[4773] Active ingredients: Aciclovir

Source: Medicines & Healthcare Products Regulatory Agency (GB)  Revision Year: 2015  Publisher: The Wellcome Foundation Ltd., 980 Great West Road, Brentford, Middlesex, TW8 9GS, United Kingdom Trading as: GlaxoSmithKline UK, Stockley Park West, Uxbridge, Middlesex, UB11 1BT

Pharmacodynamic properties

Pharmacotherapeutic group: Direct acting antivirals, Nucleosides and nucleotides excl. reverse transcriptase inhibitors
ATC code: J05AB01

Aciclovir is a synthetic purine nucleoside analogue with in vitro and in vivo inhibitory activity against human herpes viruses, including Herpes simplex virus types 1 and 2 and Varicella zoster virus (VZV), Epstein Barr virus (EBV) and Cytomegalovirus (CMV). In cell culture aciclovir has the greatest antiviral activity against HSV-1, followed (in decreasing order of potency) by HSV-2, VZV, EBV and CMV.

The inhibitory activity of aciclovir for HSV-1, HSV-2, VZV and EBV is highly selective. The enzyme thymidine kinase (TK) of normal, uninfected cells does not use aciclovir effectively as a substrate, hence toxicity to mammalian host cells is low; however, TK encoded by HSV, VZV and EBV converts aciclovir to aciclovir monophosphate, a nucleoside analogue, which is further converted to the diphosphate and finally to the triphosphate by cellular enzymes. Aciclovir triphosphate interferes with the viral DNA polymerase and inhibits viral DNA replication with resultant chain termination following its incorporation into the viral DNA.

Pharmacokinetic properties

In adults, the terminal plasma half-life of aciclovir after administration of Zovirax I.V. is about 2.9 hours. Most of the drug is excreted unchanged by the kidney. Renal clearance of aciclovir is substantially greater than creatinine clearance, indicating that tubular secretion, in addition to glomerular filtration, contributes to the renal elimination of the drug. 9-carboxymethoxy-methylguanine is the only significant metabolite of aciclovir and accounts for 10 to 15% of the dose excreted in the urine.

When aciclovir is given one hour after 1 gram of probenecid, the terminal half-life and the area under the plasma concentration time curve, are extended by 18% and 40% respectively.

In adults, mean steady state peak plasma concentrations (Cssmax) following a one-hour infusion of 2.5 mg/kg, 5 mg/kg and 10 mg/kg were 22.7 micromolar (5.1 microgram/ml), 43.6 micromolar (9.8 microgram/ml) and 92 micromolar (20.7 microgram/ml) respectively. The corresponding trough levels (Cssmin) 7 hours later were 2.2 micromolar (0.5 microgram/ml), 3.1 micromolar (0.7 microgram/ml) and 10.2 micromolar (2.3 microgram/ml) respectively. In children over 1 year of age similar mean peak (Cssmax) and trough (Cssmin) levels were observed when a dose of 250 mg/m² was substituted for 5 mg/kg and a dose of 500 mg/m² was substituted for 10 mg/kg. In neonates (0 to 3 months of age) treated with doses of 10 mg/kg administered by infusion over a one-hour period every 8 hours the Cssmax was found to be 61.2 micromolar (13.8 microgram/ml) and the Cssmin to be 10.1 micromolar (2.3 microgram/ml). A separate group of neonates treated with 15 mg/kg every 8 hours showed approximate dose proportional increases, with a Cmax of 83.5 micromolar (18.8 microgram/ml) and Cmin of 14.1 micromolar (3.2 microgram/ml).

The terminal plasma half-life in these patients was 3.8 hours. In the elderly, total body clearance falls with increasing age and is associated with decreases in creatinine clearance although there is little change in the terminal plasma half-life.

In patients with chronic renal failure the mean terminal half-life was found to be 19.5 hours. The mean aciclovir half-life during haemodialysis was 5.7 hours. Plasma aciclovir levels dropped approximately 60% during dialysis.

In a clinical study in which morbidly obese female patients (n=7) were dosed with intravenous aciclovir based on their actual body weight, plasma concentrations were found to be approximately twice that of normal weight patients (n=5), consistent with the difference in body weight between the two groups.

Cerebrospinal fluid levels are approximately 50% of corresponding plasma levels.

Plasma protein binding is relatively low (9 to 33%) and drug interactions involving binding site displacement are not anticipated.

Preclinical safety data

Mutagenicity

The results of a wide range of mutagenicity tests in vitro and in vivo indicate that aciclovir is unlikely to pose a genetic risk to man.

Carcinogenicity

Aciclovir was not found to be carcinogenic in long-term studies in the rat and the mouse.

Teratogenicity

Systemic administration of aciclovir in internationally accepted standard tests did not produce embryotoxic or teratogenic effects in rabbits, rats or mice

In a non-standard test in rats, foetal abnormalities were observed but only following such high subcutaneous doses that maternal toxicity was produced. The clinical relevance of these findings is uncertain.

Fertility

Largely reversible adverse effects on spermatogenesis in association with overall toxicity in rats and dogs have been reported only at doses of aciclovir greatly in excess of those employed therapeutically. Two-generation studies in mice did not reveal any effect of (orally administered) aciclovir on fertility.

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.