ACTONEL Film-coated tablet Ref.[50803] Active ingredients: Risedronic acid

Source: Marketing Authorisation Holder  Revision Year: 2018  Publisher: Accord Healthcare Limited, Sage House, 319 Pinner Road, North Harrow, Middlesex, HA1 4HF, United Kingdom

5.1. Pharmacodynamic properties

Pharmacotherapeutic group: Bisphosphonates
ATC Code: M05BA07

Mechanism of action

Risedronate sodium is a pyridinyl bisphosphonate that binds to bone hydroxyapatite and inhibits osteoclast-mediated bone resorption. The bone turnover is reduced while the osteoblast activity and bone mineralisation is preserved.

Pharmacodynamic effects

In preclinical studies risedronate sodium demonstrated potent anti-osteoclast and antiresorptive activity, and dose dependently increased bone mass and biomechanical skeletal strength. The activity of risedronate sodium was confirmed by measuring biochemical markers for bone turnover during pharmacodynamic and clinical studies.

Decreases in biochemical markers of bone turnover were observed within 1 month and reached a maximum in 3-6 months.

Clinical efficacy and safety

Treatment and Prevention of Postmenopausal Osteoporosis

A number of risk factors are associated with postmenopausal osteoporosis including low bone mass, low bone mineral density, early menopause, a history of smoking and a family history of osteoporosis. The clinical consequence of osteoporosis is fractures. The risk of fractures is increased with the number of risk factors.

The clinical programme studied the effect of risedronate sodium on the risk of hip and vertebral fractures and contained early and late postmenopausal women with and without fracture. Daily doses of 2.5 mg and 5 mg were studied and all groups, including the control groups, received calcium and vitamin D (if baseline levels were low). The absolute and relative risks of new vertebral and hip fractures were estimated by use of a time-to-first event analysis.

  • Two placebo-controlled studies (n 3,661) enrolled postmenopausal women under 85 years with vertebral fractures at baseline. Risedronate sodium 5 mg daily given for 3 years reduced the risk of new vertebral fractures relative to the control group. In women with respectively at least 2 or at least 1 vertebral fractures, the relative risk reduction was 49% and 41% respectively (incidence of new vertebral fractures with risedronate sodium 18.1% and 11.3%, with placebo 29.0% and 16.3%, respectively). The effect of treatment was seen as early as the end of the first year of treatment. Benefits were also demonstrated in women with multiple fractures at baseline. Risedronate sodium 5 mg daily also reduced the yearly height loss compared to the control group.
  • Two further placebo controlled studies enrolled postmenopausal women above 70 years with or without vertebral fractures at baseline. Women 70-79 years were enrolled with femoral neck BMD T-score <-3 SD (manufacturer’s range, i.e. -2.5 SD using NHANES III) and at least one additional risk factor. Women :_::80 years could be enrolled on the basis of at least one non-skeletal risk factor for hip fracture or low bone mineral density at the femoral neck. Statistical significance of the efficacy ofrisedronate sodium versus placebo is only reached when the two treatment groups 2.5 mg and 5 mg are pooled. The following results are only based on a-posteriori analysis of subgroups defined by clinical practise and current definitions of osteoporosis:
    • In the subgroup of patients with femoral neck BMD T-score S-2.5 SD (NHANES III) and at least one vertebral fracture at baseline, risedronate sodium given for 3 years reduced the risk of hip fractures by 46% relative to the control group (incidence of hip fractures in combined risedronate sodium 2.5 mg and 5 mg groups 3.8%, placebo 7.4%);
    • Data suggest that a more limited protection than this may be observed in the very elderly (:.::80 years). This may be due to the increasing importance of non-skeletal factors for hip fracture with increasing age.
    • In these studies, data analysed as a secondary endpoint indicated a decrease in the risk of new vertebral fractures in patients with low femoral neck BMD without vertebral fracture and in patients with low femoral neck BMD with or without vertebral fracture. Risedronate sodium 5 mg daily given for 3 years increased bone mineral density (BMD) relative to control at the lumbar spine, femoral neck, trochanter and wrist and prevented bone loss at the mid-shaft radius.
  • In a one-year follow-up off therapy after three years treatment with risedronate sodium 5 mg daily there was rapid reversibility of the suppressing effect of risedronate sodium on bone turnover rate.
  • In postmenopausal women taking oestrogen, risedronate sodium 5 mg daily increased bone mineral density (BMD) at the femoral neck and mid-shaft radius only, compared to oestrogen alone.
  • Bone biopsy samples from postmenopausal women treated with risedronate sodium 5 mg daily for 2 to 3 years, showed an expected moderate decrease in bone turnover. Bone formed during risedronate sodium treatment was of normal lamellar structure and bone mineralisation. These data together with the decreased incidence of osteoporosis related fractures at vertebral sites in women with osteoporosis appear to indicate no detrimental effect on bone quality.
  • Endoscopic findings from a number of patients with a number of moderate to severe gastrointestinal complaints in both risedronate sodium and control patients indicated no evidence of treatment related gastric, duodenal or oesophageal ulcers in either group, although duodenitis was uncommonly observed in the risedronate sodium group.
  • In a trial comparing before-breakfast dosing and dosing at other times of the day in women with postmenopausal osteoporosis, lumbar spine BMD gains were statistically higher with before-breakfast dosing.
  • In osteopenic postmenopausal women, risedronate sodium has shown superiority to placebo in increasing lumbar spine BMD at 12 and 24 months.

Corticosteroid Induced Osteoporosis

The clinical programme included patients initiating corticosteroid therapy \::_7.5 mg/day prednisone or equivalent) within the previous 3 months or patients who had been taking corticosteroids for more than 6 months. Results of these studies demonstrate that:

  • Risedronate sodium 5 mg daily given for one year maintains or increases bone mineral density (BMD) relative to control at the lumbar spine, femoral neck, and trochanter.
  • Risedronate sodium 5 mg daily reduced the incidence of vertebral fractures, monitored for safety, relative to control at I year in pooled studies.
  • histological examination of bone biopsies from patients taking corticosteroids and risedronate sodium 5 mg daily did not show signs of disturbed mineralisation process.

Paediatric population

The safety and efficacy ofrisedronate sodium has been investigated in a 3-year study (a randomized, double-blind, placebo-controlled, multicenter, parallel group study of one year duration followed by 2 years of open-label treatment) in paediatric patients aged 4 to less than 16 years with mild to moderate osteogenesis imperfecta. In this study, patients weighing I0-30 kg received risedronate 2.5 mg daily and patients weighing more than 30 kg received risedronate 5 mg daily.

After completion of its one-year randomized, double-blind, placebo-controlled phase, a statistically significant increase in lumbar spine BMD in the risedronate group versus placebo group was demonstrated; however an increased number of patients with at least I new morphometric (identified by x-ray) vertebral fracture was found in the risedronate group compared to placebo. During the one-year double-blind period, the percentage of patients who reported clinical fractures was 30.9% in the risedronate group and 49.0% in the placebo group. In the open-label period when all patients received risedronate (month 12 to month 36), clinical fractures were reported by 65.3% of patients initially randomized to the placebo group and by 52.9% of patients initially randomized to the risedronate group. Overall, results do not support the use of risedronate sodium in paediatric patients with mild to moderate osteogenesis imperfecta.

5.2. Pharmacokinetic properties

Absorption

Absorption after an oral dose is relatively rapid (tmax I hour) and is independent of dose over the range studied (2.5 to 30 mg). Mean oral bioavailability of the tablet is 0.63% and is decreased when risedronate sodium is administered with food. Bioavailability was similar in men and women.

Distribution

The mean steady state volume of distribution is 6.3 Llkg in humans. Plasma protein binding is about 24%.

Biotransformation

There is no evidence of systemic metabolism of risedronate sodium.

Elimination

Approximately half of the absorbed dose is excreted in urine within 24 hours, and 85% of an intravenous dose is recovered in the urine after 28 days. Mean renal clearance is 105 ml/min and mean total clearance is 122 ml/min, with the difference probably attributed to clearance due to adsorption to bone. The renal clearance is not concentration dependent, and there is a linear relationship between renal clearance and creatinine clearance. Unabsorbed risedronate sodium is eliminated unchanged in faeces. After oral administration the concentration-time profile shows three elimination phases with a terminal half-life of 480 hours.

Special Populations

Elderly

No dosage adjustment is necessary.

Acetyl salicylic acid/NSAID users

Among regular acetyl salicylic acid or NSAID users (3 or more days per week) the incidence of upper gastrointestinal adverse events in risedronate sodium treated patients was similar to that in control patients.

5.3. Preclinical safety data

In toxicological studies in rat and dog dose dependent liver toxic effects of risedronate sodium were seen, primarily as enzyme increases with histological changes in rat. The clinical relevance of these observations is unknown. Testicular toxicity occurred in rat and dog at exposures considered in excess of the human therapeutic exposure.

Dose related incidences of upper airway irritation were frequently noted in rodents. Similar effects have been seen with other bisphosphonates. Lower respiratory tract effects were also seen in longer term studies in rodents, although the clinical significance of these findings is unclear. In reproduction toxicity studies at exposures close to clinical exposure ossification changes were seen in sternum and/or skull of foetuses from treated rats and hypocalcemia and mortality in pregnant females allowed to deliver. There was no evidence of teratogenesis at 3.2mg/kg/day in rat and !Omg/kg/day in rabbit, although data are only available on a small number of rabbits. Maternal toxicity prevented testing of higher doses. Studies on genotoxicity and carcinogenesis did not show any particular risks for humans.

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.