Source: European Medicines Agency (EU) Revision Year: 2022 Publisher: Novartis Europharm Limited, Vista Building, Elm Park, Merrion Road, Dublin 4, Ireland
Pharmacotherapeutic group: Iron chelating agents
ATC code: V03AC03
Deferasirox is an orally active chelator that is highly selective for iron (III). It is a tridentate ligand that binds iron with high affinity in a 2:1 ratio. Deferasirox promotes excretion of iron, primarily in the faeces. Deferasirox has low affinity for zinc and copper, and does not cause constant low serum levels of these metals.
In an iron-balance metabolic study in iron-overloaded adult thalassaemic patients, deferasirox at daily doses of 10, 20 and 40 mg/kg (dispersible tablet formulation) induced the mean net excretion of 0.119, 0.329 and 0.445 mg Fe/kg body weight/day, respectively.
Clinical efficacy studies were conducted with EXJADE dispersible tablets (referred to below as ‘deferasirox’). Compared to the deferasirox dispersible tablet formulation, the dose of the deferasirox granules formulation is 34% lower than the dose of the deferasirox dispersible tablets, rounded to the nearest whole tablet (see section 5.2).
Deferasirox has been investigated in 411 adult (age ≥16 years) and 292 paediatric patients (aged 2 to <16 years) with chronic iron overload due to blood transfusions. Of the paediatric patients 52 were aged 2 to 5 years. The underlying conditions requiring transfusion included beta-thalassaemia, sickle cell disease and other congenital and acquired anaemias (myelodysplastic syndromes [MDS], Diamond-Blackfan syndrome, aplastic anaemia and other very rare anaemias).
Daily treatment with the deferasirox dispersible tablet formulation at doses of 20 and 30 mg/kg for one year in frequently transfused adult and paediatric patients with beta-thalassaemia led to reductions in indicators of total body iron; liver iron concentration was reduced by about -0.4 and -8.9 mg Fe/g liver (biopsy dry weight (dw)) on average, respectively, and serum ferritin was reduced by about -36 and -926 µg/l on average, respectively. At these same doses the ratios of iron excretion: iron intake were 1.02 (indicating net iron balance) and 1.67 (indicating net iron removal), respectively. Deferasirox induced similar responses in iron-overloaded patients with other anaemias. Daily doses of 10 mg/kg (dispersible tablet formulation) for one year could maintain liver iron and serum ferritin levels and induce net iron balance in patients receiving infrequent transfusions or exchange transfusions. Serum ferritin assessed by monthly monitoring reflected changes in liver iron concentration indicating that trends in serum ferritin can be used to monitor response to therapy. Limited clinical data (29 patients with normal cardiac function at baseline) using MRI indicate that treatment with deferasirox 10-30 mg/kg/day (dispersible tablet formulation) for 1 year may also reduce levels of iron in the heart (on average, MRI T2* increased from 18.3 to 23.0 milliseconds).
The principal analysis of the pivotal comparative study in 586 patients suffering from beta-thalassaemia and transfusional iron overload did not demonstrate non-inferiority of deferasirox dispersible tablets to deferoxamine in the analysis of the total patient population. It appeared from a post-hoc analysis of this study that, in the subgroup of patients with liver iron concentration ≥7 mg Fe/g dw treated with deferasirox dispersible tablets (20 and 30 mg/kg) or deferoxamine (35 to ≥50 mg/kg), the non-inferiority criteria were achieved. However, in patients with liver iron concentration <7 mg Fe/g dw treated with deferasirox dispersible tablets (5 and 10 mg/kg) or deferoxamine (20 to 35 mg/kg), non-inferiority was not established due to imbalance in the dosing of the two chelators. This imbalance occurred because patients on deferoxamine were allowed to remain on their pre-study dose even if it was higher than the protocol specified dose. Fifty-six patients under the age of 6 years participated in this pivotal study, 28 of them receiving deferasirox dispersible tablets.
It appeared from preclinical and clinical studies that deferasirox dispersible tablets could be as active as deferoxamine when used in a dose ratio of 2:1 (i.e. a dose of deferasirox dispersible tablets that is numerically half of the deferoxamine dose). For deferasirox film-coated tablets, a dose ratio of 3:1 can be considered (i.e. a dose of deferasirox film-coated tablets that is numerically one third of the deferoxamine dose). However, this dosing recommendation was not prospectively assessed in the clinical studies.
In addition, in patients with liver iron concentration ≥7 mg Fe/g dw with various rare anaemias or sickle cell disease, deferasirox dispersible tablets up to 20 and 30 mg/kg produced a decrease in liver iron concentration and serum ferritin comparable to that obtained in patients with beta-thalassaemia.
A placebo-controlled randomised study was performed in 225 patients with MDS (Low/Int-1 risk) and transfusional iron overload. The results of this study suggest that there is a positive impact of deferasirox on event-free survival (EFS, a composite endpoint including non-fatal cardiac or liver events) and serum ferritin levels. The safety profile was consistent with previous studies in adult MDS patients.
In a 5-year observational study in which 267 children aged 2 to <6 years (at enrollment) with transfusional haemosiderosis received deferasirox, there were no clinically meaningful differences in the safety and tolerability profile of Exjade in paediatric patients aged 2 to <6 years compared to the overall adult and older paediatric population, including increases in serum creatinine of >33% and above the upper limit of normal on ≥2 consecutive occasions (3.1%), and elevation of alanine aminotransferase (ALT) greater than 5 times the upper limit of normal (4.3%). Single events of increase in ALT and aspartate aminotransferase were reported in 20.0% and 8.3%, respectively, of the 145 patients who completed the study.
In a study to assess the safety of deferasirox film-coated and dispersible tablets, 173 adult and paediatric patients with transfusion dependent thalassaemia or myelodysplastic syndrome were treated for 24 weeks. A comparable safety profile for film-coated and dispersible tablets was observed.
An open-label 1:1 randomised study was performed in 224 paediatric patients aged 2 to <18 years old with transfusion-dependant anaemia and iron overload to evaluate treatment compliance, efficacy and safety of the deferasirox granule formulation compared to the dispersible tablet formulation. The majority of patients (142, 63.4%) in the study had beta-thalassemia major, 108 (48.2%) patients were naïve to iron chelation therapy (ICT) (median age 2 years, 92.6% aged 2 to <10 years) and 116 (51.8%) were ICT pre-treated (median age 7.5 years, 71.6% aged 2 to <10 years) of whom 68.1% had previously received deferasirox. In the primary analysis performed in ICT-naïve patients after 24 weeks of treatment, the compliance rate was 84.26% and 86.84% in the deferasirox dispersible tablets arm and in the deferasirox granules arm, respectively, with no statistically significant difference. Similarly, there was no statistically significant difference in mean changes from baseline in serum ferritin (SF) values between the two treatment arms (-171.52 μg/l [95% CI: -517.40, 174.36] for dispersible tablets [DT] and 4.84 μg/l [95% CI: -333.58, 343.27] for the granule formulation, difference between means [granules – DT] 176.36 μg/l [95% CI: -129.00, 481.72], two sided p-value = 0.25). The study concluded that treatment compliance and efficacy were no different between deferasirox granules and deferasirox dispersible tablet arms at different time points (24 and 48 weeks). The safety profile was overall comparable between the granules and the dispersible tablet formulations.
In patients with non-transfusion-dependent thalassaemia syndromes and iron overload, treatment with deferasirox dispersible tablets was assessed in a 1-year, randomised, double-blind, placebo-controlled study. The study compared the efficacy of two different deferasirox dispersible tablet regimens (starting doses of 5 and 10 mg/kg/day, 55 patients in each arm) and of matching placebo (56 patients). The study enrolled 145 adult and 21 paediatric patients. The primary efficacy parameter was the change in liver iron concentration (LIC) from baseline after 12 months of treatment. One of the secondary efficacy parameters was the change in serum ferritin between baseline and fourth quarter. At a starting dose of 10 mg/kg/day, deferasirox dispersible tablets led to reductions in indicators of total body iron. On average, liver iron concentration decreased by 3.80 mg Fe/g dw in patients treated with deferasirox dispersible tablets (starting dose 10 mg/kg/day) and increased by 0.38 mg Fe/g dw in patients treated with placebo (p<0.001). On average, serum ferritin decreased by 222.0 µg/l in patients treated with deferasirox dispersible tablets (starting dose 10 mg/kg/day) and increased by 115 µg/l in patients treated with placebo (p<0.001).
EXJADE granules demonstrate higher bioavailability compared to the EXJADE dispersible tablet formulation. After adjustment of the strength, the granules formulation (4 × 90 mg strength) was equivalent to EXJADE dispersible tablets (500 mg strength) with respect to the mean area under the plasma concentration time curve (AUC) under fasting conditions. The Cmax was increased by 34% (90% CI: 27.9% - 40.3%); however a clinical exposure/response analysis revealed no evidence of clinically relevant effects of such an increase.
Deferasirox (dispersible tablet formulation) is absorbed following oral administration with a median time to maximum plasma concentration (tmax) of about 1.5 to 4 hours. The absolute bioavailability (AUC) of deferasirox (dispersible tablet formulation) is about 70% compared to an intravenous dose. The absolute bioavailability of the granule formulation has not been determined. Bioavailability of deferasirox granules was 52% greater than that with dispersible tablets.
A food-effect study involving administration of the granules to healthy volunteers under fasting conditions and with a low-fat (fat content = approximately 30% of calories) or high-fat (fat content >50% of calories) meal indicated that the AUC and Cmax were slightly decreased after a low-fat meal (by 10% and 11%, respectively). After a high-fat meal, only AUC was mildly increased (by 18%). When the granules were administered with apple sauce or yogurt, a food effect was absent.
Deferasirox is highly (99%) protein bound to plasma proteins, almost exclusively serum albumin, and has a small volume of distribution of approximately 14 litres in adults.
Glucuronidation is the main metabolic pathway for deferasirox, with subsequent biliary excretion. Deconjugation of glucuronidates in the intestine and subsequent reabsorption (enterohepatic recycling) is likely to occur: in a healthy volunteer study, the administration of cholestyramine after a single dose of deferasirox resulted in a 45% decrease in deferasirox exposure (AUC).
Deferasirox is mainly glucuronidated by UGT1A1 and to a lesser extent UGT1A3. CYP450-catalysed (oxidative) metabolism of deferasirox appears to be minor in humans (about 8%). No inhibition of deferasirox metabolism by hydroxyurea was observed in vitro.
Deferasirox and its metabolites are primarily excreted in the faeces (84% of the dose). Renal excretion of deferasirox and its metabolites is minimal (8% of the dose). The mean elimination half-life (t1/2) ranged from 8 to 16 hours. The transporters MRP2 and MXR (BCRP) are involved in the biliary excretion of deferasirox.
The Cmax and AUC0-24h of deferasirox increase approximately linearly with dose under steady-state conditions. Upon multiple dosing exposure increased by an accumulation factor of 1.3 to 2.3.
The overall exposure of adolescents (12 to ≤17 years) and children (2 to <12 years) to deferasirox after single and multiple doses was lower than that in adult patients. In children younger than 6 years old exposure was about 50% lower than in adults. Since dosing is individually adjusted according to response this is not expected to have clinical consequences.
Females have a moderately lower apparent clearance (by 17.5%) for deferasirox compared to males. Since dosing is individually adjusted according to response this is not expected to have clinical consequences.
The pharmacokinetics of deferasirox have not been studied in elderly patients (aged 65 or older).
The pharmacokinetics of deferasirox have not been studied in patients with renal impairment. The pharmacokinetics of deferasirox were not influenced by liver transaminase levels up to 5 times the upper limit of the normal range.
In a clinical study using single doses of 20 mg/kg deferasirox dispersible tablets, the average exposure was increased by 16% in subjects with mild hepatic impairment (Child-Pugh Class A) and by 76% in subjects with moderate hepatic impairment (Child-Pugh Class B) compared to subjects with normal hepatic function. The average Cmax of deferasirox in subjects with mild or moderate hepatic impairment was increased by 22%. Exposure was increased 2.8-fold in one subject with severe hepatic impairment (Child-Pugh Class C) (see sections 4.2 and 4.4).
Non-clinical data reveal no special hazard for humans based on conventional studies of safety pharmacology, repeated dose toxicity, genotoxicity or carcinogenic potential. The main findings were kidney toxicity and lens opacity (cataracts). Similar findings were observed in neonatal and juvenile animals. The kidney toxicity is considered mainly due to iron deprivation in animals that were not previously overloaded with iron.
Tests of genotoxicity in vitro were negative (Ames test, chromosomal aberration test) while deferasirox caused formation of micronuclei in vivo in the bone marrow, but not liver, of non-iron-loaded rats at lethal doses. No such effects were observed in iron-preloaded rats. Deferasirox was not carcinogenic when administered to rats in a 2-year study and transgenic p53+/- heterozygous mice in a 6-month study.
The potential for toxicity to reproduction was assessed in rats and rabbits. Deferasirox was not teratogenic, but caused increased frequency of skeletal variations and stillborn pups in rats at high doses that were severely toxic to the non-iron-overloaded mother. Deferasirox did not cause other effects on fertility or reproduction.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.