Source: Medicines & Healthcare Products Regulatory Agency (GB) Revision Year: 2019 Publisher: Sandoz Limited, Frimley Business Park, Frimley, Camberley, Surrey, GU16 7SR
Fluvastatin is contraindicated:
*in patients with known hypersensitivity to fluvastatin or to any of the excipients listed in section 6.1.
Post marketing cases of fatal and non-fatal hepatic failures have been reported with some statins including fluvastatin. Although a causal relationship with fluvastatin treatment has not been determined, patients should be advised to report any potential symptoms or signs of hepatic failure (e.g. nausea, vomiting, loss of appetite, jaundice, impaired brain function, easy bruising or bleeding), and treatment discontinuation should be considered.
As with other lipid-lowering agents, it is recommended that liver function tests be performed before the initiation of treatment and at 12 weeks following initiation of treatment or elevation in dose and periodically thereafter in all patients. Should an increase in aspartate aminotransferase or alanine aminotransferase exceed 3 times the upper limit of normal and persist, therapy should be discontinued. In very rare cases, possibly drug-related hepatitis was observed that resolved upon discontinuation of treatment.
Caution should be exercised when fluvastatin is administered to patients with a history of liver disease or heavy alcohol ingestion.
Myopathy has rarely been reported with fluvastatin. Myositis and rhabdomyolysis have been reported very rarely. In patients with unexplained diffuse myalgias, muscle tenderness or muscle weakness, and/or marked elevation of creatine kinase (CK) values, myopathy, myositis or rhabdomyolysis have to be considered. Patients should therefore be advised to promptly report unexplained muscle pain, muscle tenderness or muscle weakness, particularly if accompanied by malaise or fever.
There have been very rare reports of an immune-mediated necrotizing myopathy (IMNM) during or after treatment with some statins. IMNM is clinically characterized by persistent proximal muscle weakness and elevated serum creatine kinase, which persist despite discontinuation of statin treatment.
Fluvastatin must not be co-administered with systemic formulations of fusidic acid or within 7 days of stopping fusidic acid treatment. In patients where the use of systemic fusidic acid is considered essential, statin treatment should be discontinued throughout the duration of fusidic acid treatment. There have been reports of rhabdomyolysis (including some fatalities) in patients receiving fusidic acid and statins in combination (see section 4.5). The patient should be advised to seek medical advice immediately if they experience any symptoms of muscle weakness, pain or tenderness.
Statin therapy may be re-introduced seven days after the last dose of fusidic acid.
In exceptional circumstances, where prolonged systemic fusidic acid is needed, e.g. for the treatment of severe infections, the need for co-administration of Fluvastatin and fusidic acid should only be considered on a case by case basis and under close medical supervision.
There is no current evidence to require routine monitoring of plasma total CK or other muscle enzyme levels in asymptomatic patients on statins. If CK has to be measured it should not be done following strenuous exercise or in the presence of any plausible alternative cause of CK increase as this makes the value interpretation difficult.
As with all other statins physicians should prescribe fluvastatin with caution in patients with predisposing factors for rhabdomyolysis and its complications. A creatine kinase level should be measured before starting fluvastatin treatment in the following situations:
In such situations, the risk of treatment should be considered in relation to the possible benefit and clinical monitoring is recommended. If CK levels are significantly elevated at baseline (>5 x ULN), levels should be re-measured within 5 to 7 days later to confirm the results. If CK levels are still significantly elevated (>5 x ULN) at baseline, treatment should not be started.
Whilst on treatment
If muscular symptoms like pain, weakness or cramps occur in patients receiving fluvastatin, their CK levels should be measured. Treatment should be stopped if these levels are found to be significantly elevated (>5 x ULN).
If muscular symptoms are severe and cause daily discomfort, even if CK levels are elevated to ≤5 x ULN, treatment discontinuation should be considered.
Should the symptoms resolve and CK levels return to normal, then re-introduction of fluvastatin or another statin may be considered at the lowest dose and under close monitoring.
The risk of myopathy has been reported to be increased in patients receiving immunosuppressive agents (including ciclosporin), fibrates, nicotinic acid or erythromycin together with other HMG-CoA reductase inhibitors. Isolated cases of myopathy have been reported post-marketing for concomitant administration of fluvastatin with ciclosporin and fluvastatin with colchicine. Fluvastatin should be used with caution in patients receiving such concomitant medication (see section 4.5).
Exceptional cases of interstitial lung disease have been reported with some statins, especially with long term therapy (see section 4.8). Presenting features can include dyspnoea, non-productive cough and deterioration in general health (fatigue, weight loss and fever). If it is suspected a patient has developed interstitial lung disease, statin therapy should be discontinued.
Some evidence suggests that statins as a class raise blood glucose and in some patients, at high risk of future diabetes, may produce a level of hyperglycaemia where formal diabetes care is appropriate. This risk, however, is outweighed by the reduction in vascular risk with statins and therefore should not be a reason for stopping statin treatment. Patients at risk (fasting glucose 5.6 to 6.9 mmol/L, BMI >30kg/m², raised triglycerides, hypertension) should be monitored both clinically and biochemically according to national guidelines.
In patients aged <18 years, efficacy and safety have not been studied for treatment periods longer than two years. No data are available about the physical, intellectual and sexual maturation for prolonged treatment period. The long-term efficacy of fluvastatin therapy in childhood to reduce morbidity and mortality in adulthood has not been established (see section 5.1).
Fluvastatin has only been investigated in children of 9 years and older with heterozygous familial hypercholesterolaemia (for details see section 5.1). In the case of pre-pubertal children, as experience is very limited in this group, the potential risks and benefits should be carefully evaluated before the initiation of treatment.
No data are available for the use of fluvastatin in patients with the very rare condition of homozygous familial hypercholesterolaemia.
Fluvastatin Capsules contains sodium
This medicinal product contains less than 1 mmol sodium (23 mg) per hard capsule, that is to say essentially ‘sodium-free’.
Concomitant administration of fluvastatin with bezafibrate, gemfibrozil, ciprofibrate or niacin (nicotinic acid) has no clinically relevant effect on the bioavailability of fluvastatin or the other lipid-lowering agent. Since an increased risk of myopathy and/or rhabdomyolysis has been observed in patients receiving HMG-CoA reductase inhibitors together with any of these molecules, the benefit and the risk of concurrent treatment should be carefully weighed and these combinations should only be used with caution (see section 4.4).
Myotoxicity, including muscle pain and weakness and rhabdomyolysis, has been reported in isolated cases with concomitant administration of colchicine. The benefit and the risk of concurrent treatment should be carefully weighed and these combinations should only be used with caution (see section 4.4).
Studies in renal transplant patients indicate that the bioavailability of fluvastatin (up to 40 mg/day) is not elevated to a clinically significant extent in patients on stable regimens of ciclosporin. The results from another study in which 80 mg fluvastatin prolonged-release tablets were administered to renal transplant patients who were on stable ciclosporin regimen showed that fluvastatin exposure (AUC) and maximum concentration (Cmax) were increased 2-fold compared to historical data in healthy subjects. Although these increases in fluvastatin levels were not clinically significant, this combination should be used with caution. Starting and maintenance dose of fluvastatin should be as low as possible when combined with ciclosporin.
Fluvastatin (40 mg and 80 mg) had no effect on the bioavailability of ciclosporin when co-administered.
In healthy volunteers, the use of fluvastatin and warfarin (single dose) did not adversely influence warfarin plasma levels and prothrombin times compared to warfarin alone.
However, isolated incidences of bleeding episodes and/or increased prothrombin times have been reported very rarely in patients on fluvastatin receiving concomitant warfarin or other coumarin derivatives. It is recommended that prothrombin times are monitored when fluvastatin treatment is initiated, discontinued, or the dosage changes in patients receiving warfarin or other coumarin derivatives.
Administration of fluvastatin to healthy volunteers pre-treated with rifampicin (rifampin) resulted in a reduction of the bioavailability of fluvastatin by about 50%. Although at present there is no clinical evidence that fluvastatin efficacy in lowering lipid levels is altered, for patients undertaking long-term rifampicin therapy (e.g. treatment of tuberculosis), appropriate adjustment of fluvastatin dosage may be warranted to ensure a satisfactory reduction in lipid levels.
For patients receiving oral sulfonylureas (glibenclamide (glyburide), tolbutamide) for the treatment of non-insulin-dependent (type 2) diabetes mellitus (NIDDM), addition of fluvastatin does not lead to clinically significant changes in glycaemic control.
In glibenclamide-treated NIDDM patients (n=32), administration of fluvastatin (40 mg twice daily for 14 days) increased the mean Cmax, AUC, and t1/2 of glibenclamide by approximately 50%, 69% and 121%, respectively. Glibenclamide (5 to 20 mg daily) increased the mean Cmax and AUC of fluvastatin by 44% and 51%, respectively. In this study there were no changes in glucose, insulin, and C-peptide levels. However, patients on concomitant therapy with glibenclamide (glyburide) and fluvastatin should continue to be monitored appropriately when their fluvastatin dose is increased to 80 mg per day.
Fluvastatin should be administered at least 4 hours after the resin (e.g. cholestyramine) to avoid a significant interaction due to drug binding of the resin.
Administration of fluvastatin to healthy volunteers pre-treated with fluconazole (CYP 2C9 inhibitor) resulted in an increase in the exposure and peak concentration of fluvastatin by about 84% and 44%.
Although there was no clinical evidence that the safety profile of fluvastatin was altered in patients pre-treated with fluconazole for 4 days, caution should be exercised when fluvastatin is administered concomitantly with fluconazole.
Concomitant administration of fluvastatin with cimetidine, ranitidine, or omeprazole results in an increase in the bioavailability of fluvastatin, which, however, is of no clinical relevance.
The overall magnitude of the changes in phenytoin pharmacokinetics during co-administration with fluvastatin is relatively small and not clinically significant. Thus, routine monitoring of phenytoin plasma levels is sufficient during co-administration with fluvastatin.
No clinically significant pharmacokinetic interactions occur when fluvastatin is concomitantly administered with propranolol, digoxin, losartan, clopidogrel or amlodipine. Based on the pharmacokinetic data, no monitoring or dosage adjustments are required when fluvastatin is concomitantly administered with these agents.
Concomitant administration of fluvastatin with the potent cytochrome P450 (CYP) 3A4 inhibitors itraconazole and erythromycin has minimal effects on the bioavailability of fluvastatin. Given the minimal involvement of this enzyme in the metabolism of fluvastatin, it is expected that other CYP3A4 inhibitors (e.g. ketoconazole, ciclosporin) are unlikely to affect the bioavailability of fluvastatin.
The risk of myopathy including rhabdomyolysis may be increased by the concomitant administration of systemic fusidic acid with statins. The mechanism of this interaction (whether it is pharmacodynamic or pharmacokinetic, or both) is yet unknown. There have been reports of rhabdomyolysis (including some fatalities) in patients receiving this combination.
If treatment with systemic fusidic acid is necessary, fluvastatin treatment should be discontinued throughout the duration of the fusidic acid treatment. Also see section 4.4.
Based on the lack of interaction of fluvastatin with other CYP3A4 substrates, fluvastatin is not expected to interact with grapefruit juice.
Women of childbearing potential have to use effective contraception.
If a patient becomes pregnant while taking Fluvastatin Capsules, therapy should be discontinued.
There is insufficient data on the use of fluvastatin during pregnancy.
Since HMG-CoA reductase inhibitors decrease the synthesis of cholesterol and possibly of other biologically active substances derived from cholesterol, they may cause foetal harm when administered to pregnant women. Therefore, fluvastatin is contraindicated during pregnancy (see section 4.3).
Based on preclinical data, it is expected that fluvastatin is excreted into human milk. There is insufficient information on the effects of fluvastatin in newborns/infants.
Fluvastatin is contraindicated in breastfeeding women (see section 4.3).
In animal studies no effects on male and female fertility were observed.
No studies on the effects on the ability to drive and use machines have been performed.
The most commonly reported adverse drug reactions are mild gastrointestinal symptoms, insomnia and headache.
Adverse drug reactions (Table 1) are listed by MedDRA system organ class. Within each system organ class, the adverse drug reactions are ranked by frequency, with the most frequent first. Within each frequency grouping, adverse drug reactions are presented in order of decreasing seriousness. In addition, the corresponding frequency category, using the following convention (CIOMS III) is also provided for each adverse drug reaction: very common (≥1/10); common (≥1/100 to <1/10); uncommon (≥1/1,000 to <1/100); rare (≥1/10,000 to <1/1,000) very rare (<1/10,000); not known (cannot be estimated from the available data).
Table 1. Adverse drug reactions:
Very rare: Thrombocytopenia
Rare: Hypersensitivity reactions (rash, urticaria)
Very rare: Anaphylactic reaction
Common: Insomnia
Common: Headache
Very rare: Paresthesia, dysesthesia, hypoesthesia also known to be associated with the underlying hyperlipidaemic disorders
Very rare: Vasculitis
Common: Nausea, abdominal pain, dyspepsia
Very rare: Pancreatitis
Not known: Diarrhoea
Very rare: Hepatitis
Very rare: Angioedema, face oedema and other skin reactions (e.g. eczema, dermatitis, bullous exanthema)
Rare: Myalgia, muscular weakness, myopathy
Very rare: Rhabdomyolysis, lupus like syndrome, myositis
Not known: Immune-mediated necrotizing myopathy (see section 4.4)
Not known*: Erectile dysfunction
Common: Blood creatine phosphokinase increased, blood transaminases increased
* Based on post-marketing experience with fluvastatin via spontaneous case reports and literature cases. Because these reactions are reported voluntarily from a population of uncertain size, it is not possible to reliably estimate their frequency which is therefore categorised as not known.
The following adverse events have been reported with some statins:
The safety profile of fluvastatin in children and adolescents with heterozygous familial hypercholesterolaemia assessed in 114 patients aged 9 to 17 years treated in two open-label non-comparative clinical trials was similar to the one observed in adults. In both clinical trials no effect was observed on growth and sexual maturation. The ability of the trials to detect any effect of treatment in this area was however low.
Biochemical abnormalities of liver function have been associated with HMG-CoA reductase inhibitors and other lipid-lowering agents. Based on pooled analyses of controlled clinical trials confirmed elevations of alanine aminotransferase or aspartate aminotranferase levels to more than 3 times the upper limit of normal occurred in 0.2% on fluvastatin capsules 20 mg/day, 1.5% to 1.8% on fluvastatin capsules 40 mg/day, 1.9% on fluvastatin prolonged release tablets 80 mg/day and in 2.7% to 4.9% on twice daily fluvastatin capsules 40 mg. The majority of patients with these abnormal biochemical findings were asymptomatic. Marked elevations of CK levels to more than 5 x ULN developed in a very small number of patients (0.3 to 1.0%).
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme (www.mhra.gov.uk/yellowcard).
Not applicable.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.