Source: European Medicines Agency (EU) Revision Year: 2022 Publisher: Boehringer Ingelheim International GmbH, Binger Str. 173, 55216 Ingelheim am Rhein, Germany
Hypersensitivity to the active substances, to any other Sodium-Glucose-Co-Transporter-2 (SGLT2) inhibitor, to any other Dipeptidyl-Peptidase-4 (DPP-4) inhibitor, or to any of the excipients listed in section 6.1.
Rare cases of diabetic ketoacidosis (DKA), including life-threatening and fatal cases, have been reported in patients treated with SGLT2 inhibitors, including empagliflozin. In a number of cases, the presentation of the condition was atypical with only moderately increased blood glucose values, below 14 mmol/L (250 mg/dL). It is not known if DKA is more likely to occur with higher doses of empagliflozin.
The risk of DKA must be considered in the event of non-specific symptoms such as nausea, vomiting, anorexia, abdominal pain, excessive thirst, difficulty breathing, confusion, unusual fatigue or sleepiness. Patients should be assessed for ketoacidosis immediately if these symptoms occur, regardless of blood glucose level.
In patients where DKA is suspected or diagnosed, treatment with empagliflozin should be discontinued immediately.
Treatment should be interrupted in patients who are hospitalised for major surgical procedures or acute serious medical illnesses. Monitoring of ketones is recommended in these patients. Measurement of blood ketone levels is preferred to urine. Treatment with empagliflozin may be restarted when the ketone values are normal and the patient’s condition has stabilised.
Before initiating empagliflozin, factors in the patient history that may predispose to ketoacidosis should be considered.
Patients who may be at higher risk of DKA include patients with a low beta-cell function reserve (e.g. type 2 diabetes patients with low C-peptide or latent autoimmune diabetes in adults (LADA) or patients with a history of pancreatitis), patients with conditions that lead to restricted food intake or severe dehydration, patients for whom insulin doses are reduced and patients with increased insulin requirements due to acute medical illness, surgery or alcohol abuse. SGLT2 inhibitors should be used with caution in these patients.
Restarting SGLT2 inhibitor treatment in patients with previous DKA while on SGLT2 inhibitor treatment is not recommended, unless another clear precipitating factor is identified and resolved.
Glyxambi should not be used for treatment of patients with type 1 diabetes. Data from a clinical trial program in patients with type 1 diabetes showed increased DKA occurrence with common frequency in patients treated with empagliflozin 10 mg and 25 mg as an adjunct to insulin compared to placebo.
In patients with an eGFR below 60 mL/min/1.73 m² or CrCl <60 mL/min, the daily dose of empagliflozin/linagliptin is limited to 10 mg/5 mg (see section 4.2). Empagliflozin/linagliptin is not recommended when eGFR is below 30 mL/min/1.73 m² or CrCl is below 30 mL/min. Empagliflozin/linagliptin should not be used in patients with ESRD or in patients on dialysis. There are insufficient data to support use in these patients (see sections 4.2, 5.1 and 5.2).
Assessment of renal function is recommended as follows:
Cases of hepatic injury have been reported with empagliflozin in clinical trials. A causal relationship between empagliflozin and hepatic injury has not been established.
Haematocrit increase was observed with empagliflozin treatment (see section 4.8).
There is experience with empagliflozin for the treatment of diabetes in patients with chronic kidney disease (eGFR ≥30 mL/min/1.73 m²) both with and without albuminuria. Patients with albuminuria may benefit more from treatment with empagliflozin.
Based on the mode of action of SGLT2 inhibitors, osmotic diuresis accompanying therapeutic glucosuria may lead to a modest decrease in blood pressure (see section 5.1). Therefore, caution should be exercised in patients for whom an empagliflozin-induced drop in blood pressure could pose a risk, such as patients with known cardiovascular disease, patients on anti-hypertensive therapy (e.g. thiazide and loop diuretics, see also section 4.5) with a history of hypotension or patients aged 75 years and older.
In case of conditions that may lead to fluid loss (e.g. gastrointestinal illness), careful monitoring of volume status (e.g. physical examination, blood pressure measurements, laboratory tests including haematocrit) and electrolytes is recommended for patients receiving empagliflozin. Temporary interruption of treatment with Glyxambi should be considered until the fluid loss is corrected.
A higher risk of volume depletion adverse reactions were reported in patients aged 75 years and older, treated with empagliflozin, especially at 25 mg/day (see section 4.8). Therefore, special attention should be given to their volume intake in case of co-administered medicinal products which may lead to volume depletion (e.g. diuretics, ACE inhibitors). Therapeutic experience is limited with Glyxambi in patients >75 years of age, and, no experience is available in patients aged 85 years and older. Initiation of therapy with Glyxambi in this population is not recommended (see section 4.2).
In Glyxambi clinical trials, the incidence of urinary tract infections was overall similar between the patients treated with Glyxambi and the patients treated with empagliflozin or linagliptin. The frequencies were comparable to the incidence of urinary tract infections in empagliflozin clinical trials (see section 4.8).
In a pool of placebo-controlled double-blind trials of 18 to 24 weeks duration, the overall frequency of urinary tract infection reported as adverse event was similar in patients treated with empagliflozin 25 mg and placebo and higher in patients treated with empagliflozin 10 mg (see section 4.8). Postmarketing cases of complicated urinary tract infections including pyelonephritis and urosepsis have been reported in patients treated with empagliflozin. Pyelonephritis and urosepsis were not reported from the clinical trials in patients treated with Glyxambi. However, temporary interruption of Glyxambi should be considered in patients with complicated urinary tract infections.
Post-marketing cases of necrotising fasciitis of the perineum, (also known as Fournier’s gangrene), have been reported in female and male patients taking SGLT2 inhibitors. This is a rare but serious and potentially life-threatening event that requires urgent surgical intervention and antibiotic treatment.
Patients should be advised to seek medical attention if they experience a combination of symptoms of pain, tenderness, erythema, or swelling in the genital or perineal area, with fever or malaise. Be aware that either uro-genital infection or perineal abscess may precede necrotising fasciitis. If Fournier’s gangrene is suspected, Glyxambi should be discontinued and prompt treatment (including antibiotics and surgical debridement) should be instituted.
An increase in cases of lower limb amputation (primarily of the toe) has been observed in long-term clinical trials with another SGLT2 inhibitor. It is unknown whether this constitutes a class effect. Like for all diabetic patients it is important to counsel patients on routine preventative foot-care.
Experience with empagliflozin in New York Heart Association (NYHA) class I-II is limited, and there is no experience in clinical trials with empagliflozin in NYHA class III-IV. In the EMPA-REG OUTCOME trial, 10.1% of the patients were reported with cardiac failure at baseline. The reduction of cardiovascular death in these patients was consistent with the overall trial population.
Due to the mechanism of action of empagliflozin, patients taking Glyxambi will test positive for glucose in their urine.
Monitoring glycaemic control with 1,5-AG assay is not recommended as measurements of 1,5-AG are unreliable in assessing glycaemic control in patients taking SGLT2 inhibitors. Use of alternative methods to monitor glycaemic control is advised.
Use of dipeptidyl peptidase-4 (DPP-4) inhibitors has been associated with a risk of developing acute pancreatitis. Acute pancreatitis has been observed in patients taking linagliptin. In a cardiovascular and renal safety trial (CARMELINA) with median observation period of 2.2 years, adjudicated acute pancreatitis was reported in 0.3% of patients treated with linagliptin and in 0.1% of patients treated with placebo. Patients should be informed of the characteristic symptoms of acute pancreatitis.
If pancreatitis is suspected, Glyxambi should be discontinued; if acute pancreatitis is confirmed, Glyxambi should not be restarted. Caution should be exercised in patients with a history of pancreatitis.
Bullous pemphigoid has been observed in patients taking linagliptin. In the CARMELINA trial, bullous pemphigoid was reported in 0.2% of patients on treatment with linagliptin and in no patient on placebo. If bullous pemphigoid is suspected, Glyxambi should be discontinued.
Empagliflozin and linagliptin as single agents showed an incidence of hypoglycaemia comparable to placebo when used alone or in combination with other antidiabetics not known to cause hypoglycaemia (e.g. metformin, thiazolidinediones). When used in combination with antidiabetics known to cause hypoglycaemia (e.g. sulphonylureas and/or insulin), the incidence of hypoglycaemia of both agents was increased (see section 4.8).
There are no data about the hypoglycaemic risk of Glyxambi when used with insulin and/or sulphonylurea. However, caution is advised when Glyxambi is used in combination with antidiabetics. A dose reduction of the sulphonylurea or insulin may be considered (see section 4.2 and 4.5).
No drug interaction studies have been performed with Glyxambi and other medicinal products; however, such studies have been conducted with the individual active substances. Based on results of pharmacokinetic studies, no dose adjustment of Glyxambi is recommended when co-administered with commonly prescribed medicinal products, except those mentioned below.
Insulin and sulphonylureas may increase the risk of hypoglycaemia. Therefore, a lower dose of insulin or sulphonylureas may be required to reduce the risk of hypoglycaemia when used in combination with Glyxambi (see sections 4.2, 4.4 and 4.8).
Empagliflozin may add to the diuretic effect of thiazide and loop diuretics and may increase the risk of dehydration and hypotension (see section 4.4).
Empagliflozin is mainly excreted unchanged. A minor fraction is metabolised via uridine 5'-diphosphoglucuronosyltransferases (UGT); therefore, a clinically relevant effect of UGT inhibitors on empagliflozin is not expected (see section 5.2). The effect of UGT induction on empagliflozin (e.g. induction by rifampicin or phenytoin) has not been studied. Co-treatment with known inducers of UGT enzymes is not recommended due to a potential risk of decreased efficacy of empagliflozin. If an inducer of these UGT enzymes must be co-administered, monitoring of glycaemic control to assess response to Glyxambi is appropriate.
Co-administration of empagliflozin with probenecid, an inhibitor of UGT enzymes and OAT3, resulted in a 26% increase in peak empagliflozin plasma concentrations (Cmax) and a 53% increase in area under the concentration-time curve (AUC). These changes were not considered to be clinically meaningful.
An interaction study with gemfibrozil, an in vitro inhibitor of OAT3 and OATP1B1/1B3 transporters, showed that empagliflozin Cmax increased by 15% and AUC increased by 59% following coadministration. These changes were not considered to be clinically meaningful. Inhibition of OATP1B1/1B3 transporters by co-administration with rifampicin resulted in a 75% increase in Cmax and a 35% increase in AUC of empagliflozin. These changes were not considered to be clinically meaningful.
Interaction studies suggest that the pharmacokinetics of empagliflozin were not influenced by coadministration with metformin, glimepiride, pioglitazone, sitagliptin, linagliptin, warfarin, verapamil, ramipril, simvastatin, torasemide and hydrochlorothiazide.
Empagliflozin may increase renal lithium excretion and the blood lithium levels may be decreased. Serum concentration of lithium should be monitored more frequently after empagliflozin initiation and dose changes. Please refer the patient to the lithium prescribing doctor in order to monitor serum concentration of lithium.
Interaction studies conducted in healthy volunteers suggest that empagliflozin had no clinically relevant effect on the pharmacokinetics of metformin, glimepiride, pioglitazone, sitagliptin, linagliptin, simvastatin, warfarin, ramipril, digoxin, diuretics and oral contraceptives.
Co-administration of rifampicin decreased linagliptin exposure by 40%, suggesting that the efficacy of linagliptin may be reduced when administered in combination with a strong P-glycoprotein (P-gp) or cytochrome P450 (CYP) isozyme CYP3A4 inducer, particularly if these are administed long-term (see section 5.2). Co-administration with other potent inducers of P-gp and CYP3A4, such as carbamazepine, phenobarbital and phenytoin, has not been studied.
Co-administration of a single 5 mg oral dose of linagliptin and multiple 200 mg oral doses of ritonavir, a potent inhibitor of P-glycoprotein and CYP3A4, increased the AUC and Cmax of linagliptin approximately twofold and threefold, respectively. The unbound concentrations, which are usually less than 1% at the therapeutic dose of linagliptin, were increased 4 to 5-fold after co-administration with ritonavir. Simulations of steady-state plasma concentrations of linagliptin with and without ritonavir indicated that the increase in exposure will be not associated with an increased accumulation. These changes in linagliptin pharmacokinetics were not considered to be clinically relevant. Therefore, clinically relevant interactions would not be expected with other P-glycoprotein/CYP3A4 inhibitors.
Interaction studies conducted in healthy volunteers suggest that the pharmacokinetics of linagliptin were not influenced by co-administration with metformin and glibenclamide.
Linagliptin is a weak competitive and a weak to moderate mechanism-based inhibitor of CYP isozyme CYP3A4, but does not inhibit other CYP isozymes. It is not an inducer of CYP isozymes. Linagliptin is a P-glycoprotein substrate, and inhibits P-glycoprotein mediated transport of digoxin with low potency.
Linagliptin had no clinically relevant effect on the pharmacokinetics of metformin, glibenclamide, simvastatin, pioglitazone, warfarin, digoxin, empagliflozin or oral contraceptives providing in vivo evidence of a low propensity for causing drug interactions with substrates of CYP3A4, CYP2C9, CYP2C8, P-gp and organic cationic transporter (OCT).
There are no data from the use of empagliflozin and linagliptin in pregnant women. Animal studies have shown that empagliflozin and linagliptin cross the placenta during late gestation, but do not indicate direct or indirect harmful effects with respect to early embryonic development with either empagliflozin or linagliptin (see section 5.3). Animal studies with empagliflozin have shown adverse effects on postnatal development (see section 5.3). As a precautionary measure it is preferable to avoid the use of Glyxambi during pregnancy.
No data in humans are available on excretion of empagliflozin and linagliptin into milk. Available non-clinical data in animals have shown excretion of empagliflozin and linagliptin in milk. A risk to newborns or infants cannot be excluded. Glyxambi should not be used during breast-feeding.
No trials on the effect on human fertility have been conducted with Glyxambi or with the individual active substances. Non-clinical studies with empagliflozin and linagliptin as single agents do not indicate direct or indirect harmful effects with respect to fertility (see section 5.3).
Glyxambi has minor influence on the ability to drive and use machines. Patients should be advised to take precautions to avoid hypoglycaemia while driving and using machines, in particular when Glyxambi is used in combination with other antidiabetic medicinal products known to cause hypoglycaemia (e.g. insulin and analogues, sulphonylureas).
The most frequent adverse reaction was urinary tract infection (7.5% with Glyxambi 10 mg empagliflozin/5 mg linagliptin and 8.5% with Glyxambi 25 mg empagliflozin/5 mg linagliptin) (see Description of selected adverse reactions). The most serious adverse reactions were ketoacidosis (<0.1%), pancreatitis (0.2%), hypersensitivity (0.6%), and hypoglycaemia (2.4%) (see section 4.4).
Overall, the safety profile of Glyxambi was in line with the safety profiles of the individual active substances (empagliflozin and linagliptin). No additional adverse reactions were identified with Glyxambi.
The adverse reactions shown in the table below (see Table 2) are listed by system organ class and are based on the safety profiles of empagliflozin and linagliptin monotherapy. Frequency categories are defined as very common (≥1/10), common (≥1/100 to <1/10), uncommon (≥1/1 000 to <1/100), rare (≥1/10 000 to <1/1000), very rare (<1/10000) and not known (cannot be estimated from the available data).
Table 2. Tabulated list of adverse reactions (MedDRA) from reported placebo-controlled trials and from post-marketing experience:
System organ class | Frequency | Adverse reaction |
---|---|---|
Infections and infestations | Common | Urinary tract infection1,* (including pyelonephritis and urosepsis)4 |
Common | Vaginal moniliasis, vulvovaginitis, balanitis and other genital infections1,* | |
Common | Nasopharyngitis2 | |
Rare | Necrotising fasciitis of the perineum (Fournier´s gangrene)# | |
Immune system disorders | Uncommon | Hypersensitivity2 |
Uncommon | Angioedema3,4, urticaria3,4 | |
Metabolism and nutrition disorders | Common | Hypoglycaemia (when used with sulphonylurea or insulin)* |
Common | Thirst | |
Rare | Diabetic ketoacidosis4,# | |
Vascular disorders | Uncommon | Volume depletion1,*,b |
Respiratory, thoracic and mediastinal disorders | Common | Cough2 |
Gastrointestinal disorders | Common | Constipation |
Uncommon | Pancreatitis2 | |
Rare | Mouth ulceration3 | |
Skin and subcutaneous tissue disorders | Common | Pruritus1 |
Common | Rash3,4 | |
Not known | Bullous pemphigoid2,a | |
Renal and urinary disorders | Common | Increased urination1,* |
Uncommon | Dysuria1 | |
Very rare | Tubulointerstitial nephritis4 | |
Investigations | Common | Amylase increased2 |
Common | Lipase increased2 | |
Uncommon | Haematocrit increased1,5 | |
Uncommon | Serum lipids increased1,6 | |
Uncommon | Blood creatinine increased/Glomerular filtration rate decreased1,* |
1 derived from empagliflozin experiences
2 derived from linagliptin experiences
3 derived from linagliptin postmarketing experience
4 derived from empagliflozin postmarketing experience
5 Mean changes from baseline in haematocrit were 3.3% and 4.2% for Glyxambi 10 mg/5 mg and 25 mg/5 mg, respectively, compared to 0.2% for placebo. In a clinical trial with empagliflozin, haematocrit values returned towards baseline values after a follow-up period of 30 days after treatment stop.
6 Mean percent increases from baseline for Glyxambi 10 mg/5 mg and 25 mg/5 mg versus placebo, respectively, were total cholesterol 3.2% and 4.6% versus 0.5%; HDL-cholesterol 8.5% and 6.2% versus 0.4%; LDL-cholesterol 5.8% and 11.0% versus 3.3%; triglycerides -0.5% and 3.3% versus 6.4%.
a In the CARMELINA trial (see section 5.1), bullous pemphigoid was reported in 0.2% patients treated with linagliptin and in no patients treated with placebo.
b Pooled data of empagliflozin trials in patients with heart failure (where half of the patients had type 2 diabetes mellitus) showed a higher frequency of volume depletion (“very common”: 11.4% for empagliflozin versus 9.7% for placebo).
# see section 4.4
* see subsection below for additional information
In pooled clinical trials of Glyxambi in patients with type 2 diabetes and inadequate glycaemic control on background metformin, the frequency of the reported hypoglycaemic events was 2.4%. The incidence of confirmed hypoglycaemic events was low (<1.5%). There was no notable difference of the incidence in patients treated with different dose strengths of Glyxambi compared to the treatment with empagliflozin or linagliptin.
One patient administered Glyxambi experienced a confirmed (investigator-defined), major hypoglycaemic event (defined as an event requiring assistance) in the active- or placebo-controlled trials (overall frequency 0.1%).
Based on the experience with empagliflozin and linagliptin, an increase of the risk of hypoglycaemia is expected with the concomitant treatment of insulin and/or sulphonylurea (see section 4.4 and information below).
The frequency of hypoglycaemia depended on the background therapy in the respective trials and was similar for empagliflozin and placebo as monotherapy, as add-on to metformin, and as add-on to pioglitazone +/- metformin. The frequency of patients with hypoglycaemia was increased in patients treated with empagliflozin compared to placebo when given as add-on to metformin plus sulphonylurea (empagliflozin 10 mg: 16.1%, empagliflozin 25 mg: 11.5%, placebo: 8.4%), add-on to basal insulin +/- metformin and +/-sulphonylurea (empagliflozin 10 mg: 19.5%, empagliflozin 25 mg: 28.4%, placebo: 20.6% during initial 18 weeks treatment when insulin could not be adjusted; empagliflozin 10 mg and 25 mg: 36.1%, placebo 35.3% over the 78 week trial), and add-on to MDI insulin with or without metformin (empagliflozin 10 mg: 39.8%, empagliflozin 25 mg: 41.3%, placebo: 37.2% during initial 18 weeks treatment when insulin could not be adjusted; empagliflozin 10 mg: 51.1%, empagliflozin 25 mg: 57.7%, placebo: 58% over the 52-week trial).
The frequency of patients with major hypoglycaemic events was low (<1%) and similar for empagliflozin and placebo as monotherapy, as add-on to metformin +/- sulfonylurea, and as add-on to pioglitazone +/- metformin.
The frequency of patients with major hypoglycaemic events was increased in patients treated with empagliflozin compared to placebo when given as add-on to basal insulin +/- metformin and +/- sulphonylurea (empagliflozin 10 mg: 0%, empagliflozin 25 mg: 1.3%, placebo: 0% during initial 18 weeks treatment when insulin could not be adjusted; empagliflozin 10 mg: 0%, empagliflozin 25 mg: 1.3%, placebo 0% over the 78-week trial), and add-on to MDI insulin with or without metformin (empagliflozin 10 mg: 1.6%, empagliflozin 25 mg: 0.5%, placebo: 1.6% during initial 18 weeks treatment when insulin could not be adjusted and over the 52-week trial).
The most frequently reported adverse event in clinical trials with linagliptin was hypoglycaemia observed under the triple combination, linagliptin plus metformin plus sulphonylurea (22.9% vs 14.8% in placebo).
Hypoglycaemias in the placebo-controlled trials (10.9%; N=471) were mild (80%; N=384), moderate (16.6%; N=78) or severe (1.9%; N=9) in intensity.
In clinical trials with Glyxambi, there was no notable difference of the frequency of urinary tract infections in patients treated with Glyxambi (Glyxambi 25 mg/5 mg: 8.5%; Glyxambi 10 mg/5 mg: 7.5%) compared to the patients treated with empagliflozin and linagliptin. The frequencies have been comparable to those reported from the empagliflozin clinical trials (see also section 4.4).
In empagliflozin trials, the overall frequency of urinary tract infection was similar in patients treated with empagliflozin 25 mg and placebo (7.0% and 7.2%), and higher in patients treated with empagliflozin 10 mg (8.8%). Similar to placebo, urinary tract infection was reported more frequently for empagliflozin in patients with a history of chronic or recurrent urinary tract infections. The intensity of urinary tract infections was similar to placebo for mild, moderate and severe intensity reports. Urinary tract infection was reported more frequently in female patients treated with empagliflozin compared to placebo, but not in male patients.
In clinical trials with Glyxambi, genital infections in patients treated with Glyxambi (Glyxambi 25 mg/5 mg: 3.0%; Glyxambi 10 mg/5 mg: 2.5%) were reported more frequently than for linagliptin but less freqeuntly than for empagliflozin. Overall, the frequencies for Glyxambi have been comparable to those reported from the empagliflozin clinical trials.
In empagliflozin trials, vaginal moniliasis, vulvovaginitis, balanitis and other genital infections were reported more frequently for empagliflozin 10 mg (4.0%) and empagliflozin 25 mg (3.9%) compared to placebo (1.0%). These infections were reported more frequently for empagliflozin compared to placebo in female patients, and the difference in frequency was less pronounced in male patients. The genital tract infections were mild and moderate in intensity, none was severe in intensity.
In clinical trials with Glyxambi, increased urination in patients treated with Glyxambi (Glyxambi 25 mg/5 mg: 2.6%; Glyxambi 10 mg/5 mg: 1.4%) was reported more frequently than for linagliptin and with similar frequency than for empagliflozin. Overall, the frequencies for Glyxambi have been comparable to those reported from the empagliflozin clinical trials.
In clinical trials with empagliflozin, increased urination (including the predefined terms pollakiuria, polyuria, nocturia) was observed at higher frequencies in patients treated with empagliflozin (empagliflozin 10 mg: 3.5%, empagliflozin 25 mg: 3.3%) compared to placebo (1.4%). Increased urination was mostly mild or moderate in intensity. The frequency of reported nocturia was comparable between placebo and empagliflozin (<1%).
In clinical trials with Glyxambi, there was no notable difference in the frequency of volume depletion in patients treated with Glyxambi (Glyxambi 25 mg/5 mg: 0.4%; Glyxambi 10 mg/5 mg: 0.8%) compared to the patients treated with empagliflozin and linagliptin. The frequencies have been comparable to those reported from the empagliflozin clinical trials.
In clinical trials with empagliflozin, the overall frequency of volume depletion (including the predefined terms blood pressure (ambulatory) decreased, blood pressure systolic decreased, dehydration, hypotension, hypovolaemia, orthostatic hypotension, and syncope) was similar in patients treated with empagliflozin (empagliflozin 10 mg: 0.6%, empagliflozin 25 mg: 0.4%) and placebo (0.3%). The frequency of volume depletion events was increased in patients 75 years and older treated with empagliflozin 10 mg (2.3%) or empagliflozin 25 mg (4.3%) compared to placebo (2.1%).
In clinical trials with Glyxambi, the frequency of patients with increased blood creatinine (Glyxambi 25 mg/5 mg: 0.4%; Glyxambi 10 mg/5 mg: 0%) and decreased glomerular filtration rate (Glyxambi 25 mg/5 mg: 0.4%; Glyxambi 10 mg/5 mg: 0.6%) has been comparable to those reported from the empagliflozin clinical trials.
In clinical trials with empagliflozin, the overall frequency of patients with increased blood creatinine and decreased glomerular filtration rate were similar between empagliflozin and placebo (blood creatinine increased: empagliflozin 10 mg 0.6%, empagliflozin 25 mg 0.1%, placebo 0.5%; glomerular filtration rate decreased: empagliflozin 10 mg 0.1%, empagliflozin 25 mg 0%, placebo 0.3%).
In clinical trials, nineteen patients 75 years or older were treated with Glyxambi. No patient was older than 85 years. The safety profile of Glyxambi did not differ in the elderly. Based on empagliflozin experiences, elderly patients may be at increased risk of volume depletion (see sections 4.2, 4.4 and 5.2).
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.
Not applicable.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.