KLERIMED Film coated tablet Ref.[28162] Active ingredients: Clarithromycin

Source: Υπουργείο Υγείας (CY)  Revision Year: 2021  Publisher: MEDOCHEMIE LTD, 1-10 Constantinoupoleos street, 3011 Limassol, Cyprus

4.3. Contraindications

Clarithromycin is contraindicated in patients with known hypersensitivity to the active substance, to macrolide antibiotic drugs or any of the excipients listed in section 6.1.

Concomitant administration of clarithromycin and any of the following drugs is contraindicated: astemizole, cisapride, pimozide or terfenadine as this may result in QT prolongation and cardiac arrhythmias, including ventricular tachycardia, ventricular fibrillation, and torsades de pointes (see section 4.5).

Concomitant administration with ticagrelor or ranolazine is contraindicated.

Concomitant administration of clarithromycin and ergot alkaloids (e.g. ergotamine or dihydroergotamine) is contraindicated, as this may result in ergot toxicity.

Clarithromycin should not be given to patients with history of QT prolongation (congenital or documented acquired QT prolongation) or ventricular cardiac arrhythmia, including torsades de pointes (see sections 4.4 and 4.5).

Clarithromycin should not be used concomitantly with HMG-CoA reductase inhibitors (statins) that are extensively metabolised by CYP3A4, (lovastatin or simvastatin), due to the increased risk of myopathy, including rhabdomyolysis (see section 4.4).

As with other strong CYP3A4 inhibitors, clarithromycin should not be used in patients taking colchicine.

Concomitant administration of clarithromycin and oral midazolam is contraindicated (see section 4.5).

Concomitant administration of clarithromycin and lomitapide is contraindicated (see section 4.5).

Clarithromycin should not be given to patients with electrolyte disturbances (hypokalaemia or hypomagnesaemia, due to the risk of prolongation of the QT interval).

Clarithromycin should not be used in patients who suffer from severe hepatic failure in combination with renal impairment.

4.4. Special warnings and precautions for use

The physician should not prescribe clarithromycin to pregnant women without carefully weighing the benefits against risk, particularly during the first three months of pregnancy (see section 4.6).

Caution is advised in patients with severe renal insufficiency (see section 4.2).

Hepatic dysfunction, including increased liver enzymes, and hepatocellular and/or cholestatic hepatitis, with or without jaundice, has been reported with clarithromycin. This hepatic dysfunction may be severe and is usually reversible. In some instances, hepatic failure with fatal outcome has been reported and generally has been associated with serious underlying diseases and/or concomitant medications. Discontinue clarithromycin immediately if signs and symptoms of hepatitis occur, such as anorexia, jaundice, dark urine, pruritus, or tender abdomen.

Clarithromycin is principally excreted by the liver. Therefore caution should be exercised in administering the antibiotic to patients with impaired hepatic function. Caution should also be exercised when administering clarithromycin to patients with moderate to severe renal impairment.

Cases of fatal hepatic failure (see section 4.8) have been reported. Some patients may have had pre-existing hepatic disease or may have been taking other hepatotoxic medicinal products. Patients should be advised to stop treatment and contact their doctor if signs and symptoms of hepatic disease develop, such as anorexia, jaundice, dark urine, pruritus, or tender abdomen.

Pseudomembranous colitis has been reported with nearly all antibacterial agents, including macrolides, and may range in severity from mild to life-threatening. Clostridium difficile associated diarrhoea (CDAD) has been reported with use of nearly all antibacterial agents including clarithromycin, and may range in severity from mild diarrhoea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon, which may lead to overgrowth of C. difficile. CDAD must be considered in all patients who present with diarrhoea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents. Therefore, discontinuation of clarithromycin therapy should be considered regardless of the indication. Microbial testing should be performed and adequate treatment initiated. Drugs inhibiting peristalsis should be avoided.

There have been post-marketing reports of colchicine toxicity with concomitant use of clarithromycin and colchicine, especially in the elderly, some of which occurred in patients with renal insufficiency. Deaths have been reported in some such patients (see section 4.5). Concomitant administration of clarithromycin and colchicine is contraindicated (see section 4.3).

Caution is advised regarding concomitant administration of clarithromycin and triazolobenzodiazepines, such as triazolam, and intravenous midazolam (see section 4.5).

Caution is advised regarding concomitant administration of clarithromycin with other ototoxic drugs, especially with aminoglycosides. Monitoring of vestibular and auditory function should be carried out during and after treatment.

Cardiovascular Events

Prolonged cardiac repolarization and QT interval, imparting a risk of developing cardiac arrhythmia and torsade de pointes, have been seen in treatment with macrolides including clarithromycin (see section 4.8). Therefore as the following situations may lead to an increased risk for ventricular arrhythmias (including torsade de pointes), clarithromycin should be used with caution in the following patients:

  • Patients with coronary artery disease, severe cardiac insufficiency, conduction disturbances or clinically relevant bradycardia.
  • Patients with electrolyte disturbances. Clarithromycin must not be given to patients with hypokalemia (see section 4.3).
  • Patients concomitantly taking other medicinal products associated with QT prolongation (see section 4.5).
  • Concomitant administration of clarithromycin with astemizole, cisapride, pimozide and terfendine is contraindicated (see section 4.3).
  • Clarithromycin must not be used in patients with congenital or documented acquired QT prolongation or history of ventricular arrhythmia (see section 4.3).

Epidemiological studies investigating the risk of adverse cardiovascular outcomes with macrolides have shown variable results. Some observational studies have identified a rare short-term risk of arrhythmia, myocardial infarction and cardiovascular mortality associated with macrolides including clarithromycin. Consideration of these findings should be balanced with treatment benefits when prescribing clarithromycin.

Pneumonia: In view of the emerging resistance of Streptococcus pneumoniae to macrolides, it is important that sensitivity testing be performed when prescribing clarithromycin for community-acquired pneumonia. In hospital-acquired pneumonia, clarithromycin should be used in combination with additional appropriate antibiotics.

Skin and soft tissue infections of mild to moderate severity: These infections are most often caused by Staphylococcus aureus and Streptococcus pyogenes, both of which may be resistant to macrolides. Therefore, it is important that sensitivity testing be performed. In cases where beta–lactam antibiotics cannot be used (e.g. allergy), other antibiotics, such as clindamycin, may be the drug of first choice. Currently, macrolides are only considered to play a role in some skin and soft tissue infections, such as those caused by Corynebacterium minutissimum , acne vulgaris, and erysipelas and in situations where penicillin treatment cannot be used.

In the event of severe acute hypersensitivity reactions, such as anaphylaxis, severe cutaneous adverse reactions (SCAR) (e.g. Acute generalised exanthematous pustulosis (AGEP), Stevens-Johnson syndrome, toxic epidermal necrolysis and drug rash with eosinophilia and systemic symptoms (DRESS)), clarithromycin therapy should be discontinued immediately and appropriate treatment should be urgently initiated.

Clarithromycin should be used with caution when administered concurrently with medications that induce the cytochrome CYP3A4 enzyme (see section 4.5).

HMG-CoA Reductase Inhibitors (statins): Concomitant use of clarithromycin with lovastatin or simvastatin is contraindicated (see section 4.3).

Caution should be exercised when prescribing clarithromycin with other statins. Rhabdomyolysis has been reported in patients taking clarithromycin and statins. Patients should be monitored for signs and symptoms of myopathy. In situations where the concomitant use of clarithromycin with statins cannot be avoided, it is recommended to prescribe the lowest registered dose of the statin. Use of a statin that is not dependent on CYP3A metabolism (e.g. fluvastatin) can be considered (see section 4.5).

Oral hypoglycaemic agents/insulin: The concomitant use of clarithromycin and oral hypoglycaemic agents (such as sulphonylurias) and/or insulin can result in significant hypoglycaemia. Careful monitoring of glucose is recommended (see section 4.5).

Oral anticoagulants: There is a risk of serious haemorrhage and significant elevations in International Normalised Ratio (INR) and prothrombin time when clarithromycin is co-administered with warfarin (see section 4.5). INR and prothrombin times should be frequently monitored while patients are receiving clarithromycin and oral anticoagulants concurrently.

Caution should be exercised when clarithromycin is co-administered with direct acting oral anticoagulants such as dabigatran, rivaroxaban and apixaban, particularly to patients at high risk of bleeding (see section 4.5).

Use of any antimicrobial therapy, such as clarithromycin, to treat H. pylori infection may select for drug-resistant organisms.

Long-term use may, as with other antibiotics, result in colonisation with increased numbers of non-susceptible bacteria and fungi. If superinfections occur, appropriate therapy should be instituted.

Attention should also be paid to the possibility of cross resistance between clarithromycin and other macrolide drugs, as well as lincomycin and clindamycin.

4.5. Interaction with other medicinal products and other forms of interaction

The use of the following drugs is strictly contraindicated due to the potential for severe drug interaction effects:

Cisapride, pimozide, astemizole and terfenadine

Elevated cisapride levels have been reported in patients receiving clarithromycin and cisapride concomitantly. This may result in QT prolongation and cardiac arrhythmias including ventricular tachycardia, ventricular fibrillation and torsades de pointes. Similar effects have been observed in patients taking clarithromycin and pimozide concomitantly (see section 4.3).

Macrolides have been reported to alter the metabolism of terfenadine resulting in increased levels of terfenadine which has occasionally been associated with cardiac arrhythmias, such as QT prolongation, ventricular tachycardia, ventricular fibrillation and torsades de pointes (see section 4.3). In one study in 14 healthy volunteers, the concomitant administration of clarithromycin and terfenadine resulted in a 2 to 3-fold increase in the serum level of the acid metabolite of terfenadine and in prolongation of the QT interval which did not lead to any clinically detectable effect. Similar effects have been observed with concomitant administration of astemizole and other macrolides.

Ergotamine/dihydroergotamine

Post-marketing reports indicate that co-administration of clarithromycin with ergotamine or dihydroergotamine has been associated with acute ergot toxicity characterised by vasospasm, and ischaemia of the extremities and other tissues including the central nervous system. Concomitant administration of clarithromycin and these medicinal products is contraindicated (see section 4.3).

HMG-CoA Reductase Inhibitors (statins)

Concomitant use of clarithromycin with lovastatin or simvastatin is contraindicated (see section 4.3) as these statins are extensively metabolized by CYP3A4 and concomitant treatment with clarithromycin increases their plasma concentration, which increases the risk of myopathy, including rhabdomyolysis. Reports of rhabdomyolysis have been received for patients taking clarithromycin concomitantly with these statins. If treatment with clarithromycin cannot be avoided, therapy with lovastatin or simvastatin must be suspended during the course of treatment.

Caution should be exercised when prescribing clarithromycin with statins. In situations where the concomitant use of clarithromycin with statins cannot be avoided, it is recommended to prescribe the lowest registered dose of the statin. Use of a statin that is not dependent on CYP3A metabolism (e.g. fluvastatin) can be considered. Patients should be monitored for signs and symptoms of myopathy.

Concomitant administration of clarithromycin with lomitapide is contraindicated due the potential for markedly increased transaminases (see section 4.3).

Effects of other Medicinal Products on Clarithromycin

Drugs that are inducers of CYP3A (e.g. rifampicin, phenytoin, carbamazepine, phenobarbital, St John’s wort) may induce the metabolism of clarithromycin. This may result in sub-therapeutic levels of clarithromycin leading to reduced efficacy. Furthermore, it might be necessary to monitor the plasma levels of the CYP3A inducer, which could be increased owing to the inhibition of CYP3A by clarithromycin (see also the relevant product information for the CYP3A4 inhibitor administered). Concomitant administration of rifabutin and clarithromycin resulted in an increase in rifabutin, and decrease in clarithromycin serum levels together with an increased risk of uveitis.

The following drugs are known or suspected to affect circulating concentrations of clarithromycin; clarithromycin dosage adjustment or consideration of alternative treatments may be required.

Efavirenz, nevirapine, rifampicin, rifabutin and rifapentine

Strong inducers of the cytochrome P450 metabolism system such as efavirenz, nevirapine, rifampicin, rifabutin, and rifapentine may accelerate the metabolism of clarithromycin and thus lower the plasma levels of clarithromycin, while increasing those of 14-OH-clarithromycin, a metabolite that is also microbiologically active. Since the microbiological activities of clarithromycin and 14-OH-clarithromycin are different for different bacteria, the intended therapeutic effect could be impaired during concomitant administration of clarithromycin and enzyme inducers.

Etravirine

Clarithromycin exposure was decreased by etravirine; however, concentrations of the active metabolite, 14-OH-clarithromycin, were increased. Because 14-OH-clarithromycin has reduced activity against Mycobacterium avium complex (MAC), overall activity against this pathogen may be altered; therefore alternatives to clarithromycin should be considered for the treatment of MAC.

Fluconazole

Concomitant administration of fluconazole 200 mg daily and clarithromycin 500 mg twice daily to 21 healthy volunteers led to increases in the mean steady-state minimum clarithromycin concentration (Cmin) and area under the curve (AUC) of 33% and 18% respectively. Steady state concentrations of the active metabolite 14-OH-clarithromycin were not significantly affected by concomitant administration of fluconazole. No clarithromycin dose adjustment is necessary.

Ritonavir

A pharmacokinetic study demonstrated that the concomitant administration of ritonavir 200 mg every eight hours and clarithromycin 500 mg every 12 hours resulted in a marked inhibition of the metabolism of clarithromycin. The clarithromycin Cmax increased by 31%, Cmin increased 182% and AUC increased by 77% with concomitant administration of ritonavir. An essentially complete inhibition of the formation of 14-OH-clarithromycin was noted. Because of the large therapeutic window for clarithromycin, no dosage reduction should be necessary in patients with normal renal function. However, for patients with renal impairment, the following dosage adjustments should be considered: For patients with creatinine clearance 30 to 60 mL/min the dose of clarithromycin should be reduced by 50%. For patients with creatinine clearance <30 mL/min the dose of clarithromycin should be decreased by 75%. Doses of clarithromycin greater than 1000 mg/day should not be coadministered with ritonavir.

Similar dose adjustments should be considered in patients with reduced renal function when ritonavir is used as a pharmacokinetic enhancer with other HIV protease inhibitors including atazanavir and saquinavir (see section below, Bi-directional drug interactions).

Effect of Clarithromycin on Other Medicinal Products

CY3A4-based interactions

Co-administration of clarithromycin, known to inhibit CYP3A, and a drug primarily metabolised by CYP3A may be associated with elevations in drug concentrations that could increase or prolong both therapeutic and adverse effects of the concomitant drug. Clarithromycin should be used with caution in patients receiving treatment with other drugs known to be CYP3A enzyme substrates, especially if the CYP3A substrate has a narrow safety margin (e.g. carbamazepine) and/or the substrate is extensively metabolised by this enzyme.

Dosage adjustments may be considered, and when possible, serum concentrations of drugs primarily metabolised by CYP3A should be monitored closely in patients concurrently receiving clarithromycin.

The following drugs or drug classes are known or suspected to be metabolised by the same CYP3A isozyme: alprazolam, astemizole, carbamazepine, cilostazol, cisapride, cyclosporine, disopyramide, ergot alkaloids, lovastatin, methylprednisolone, midazolam, omeprazole, oral anticoagulants (e.g. warfarin, rivaroxaban, apixaban, see section 4.4), atypical antipsychotics (e.g. quetiapine), pimozide, quinidine, rifabutin, sildenafil, simvastatin, sirolimus, tacrolimus, terfenadine, triazolam and vinblastine. Drugs interacting by similar mechanisms through other isozymes within the cytochrome P450 system include phenytoin, theophylline and valproate.

Direct acting oral anticoagulants (DOACs)

The DOAC dabigatran is a substrate for the efflux transporter P-gp. Rivaroxaban and apixaban are metabolised via CYP3A4 and are also substrates for P-gp. Caution should be exercised when clarithromycin is co-administered with these agents particularly to patients at high risk of bleeding (see section 4.4).

Antiarrhythmics

There have been postmarketed reports of torsades de points occurring with the concurrent use of clarithromycin and quinidine or disopyramide. Electrocardiograms should be monitored for QT prolongation during co-administration of clarithromycin with these drugs. Serum levels of quinidine and disopyramide should be monitored during clarithromycin therapy.

There have been post marketing reports of hypoglycemia with the concomitant administration of clarithromycin and disopyramide. Therefore blood glucose levels should be monitored during concomitant administration of clarithromycin and disopyramide.

Oral hypoglycemic agents/Insulin

With certain hypoglycemic drugs such as nateglinide and repaglinide, inhibition of CYP3A enzyme by clarithromycin may be involved and could cause hypoglycaemia when used concomitantly. Careful monitoring of glucose is recommended.

Omeprazole

Clarithromycin (500 mg every 8 hours) was given in combination with omeprazole (40 mg daily) to healthy adult subjects. The steady-state plasma concentrations of omeprazole were increased (Cmax, AUC0-24, and t1/2 increased by 30%, 89%, and 34%, respectively), by the concomitant administration of clarithromycin. The mean 24-hour gastric pH value was 5.2 when omeprazole was administered alone and 5.7 when omeprazole was co-administered with clarithromycin.

Sildenafil, tadalafil and vardenafil

Each of these phosphodiesterase inhibitors is metabolised, at least in part, by CYP3A, and CYP3A may be inhibited by concomitantly administered clarithromycin. Co-administration of clarithromycin with sildenafil, tadalafil or vardenafil would likely result in increased phosphodiesterase inhibitor exposure. Reduction of sildenafil, tadalafil and vardenafil dosages should be considered when these drugs are co-administered with clarithromycin.

Theophylline and carbamazepine

Results of clinical studies indicate that there was a modest but statistically significant (p≤ 0.05) increase of circulating theophylline or carbamazepine levels when either of these drugs were administered concomitantly with clarithromycin. Dose reduction may need to be considered.

Tolterodine

The primary route of metabolism for tolterodine is via the 2D6 isoform of cytochrome P450 (CYP2D6). However, in a subset of the population devoid of CYP2D6, the identified pathway of metabolism is via CYP3A. In this population subset, inhibition of CYP3A results in significantly higher serum concentrations of tolterodine. A reduction in tolterodine dosage may be necessary in the presence of CYP3A inhibitors, such as clarithromycin in the CYP2D6 poor metabolizer population.

Triazolobenzodiazepines (e.g. alprazolam, midazolam, triazolam)

When midazolam was co-administered with clarithromycin tablets (500 mg twice daily), midazolam AUC was increased 2.7-fold after intravenous administration of midazolam and 7-fold after oral administration. Concomitant administration of oral midazolam and clarithromycin should be avoided. If intravenous midazolam is co-administered with clarithromycin, the patient must be closely monitored to allow dose adjustment. The same precautions should also apply to other benzodiazepines that are metabolized by CYP3A, including triazolam and alprazolam. For benzodiazepines which are not dependent on CYP3A for their elimination (temazepam, nitrazepam, lorazepam), a clinically important interaction with clarithromycin is unlikely.

There have been post-marketing reports of drug interactions and central nervous system (CNS) effects (e.g., somnolence and confusion) with the concomitant use of clarithromycin and triazolam. Monitoring the patient for increased CNS pharmacological effects is suggested.

Other drug interactions

Aminoglycosides

Caution is advised regarding concomitant administration of clarithromycin with other ototoxic drugs, especially with aminoglycosides (see section 4.4).

Colchicine

Colchicine is a substrate for both CYP3A and the efflux transporter, P-glycoprotein (Pgp). Clarithromycin and other macrolides are known to inhibit CYP3A and Pgp. When clarithromycin and colchicine are administered together, inhibition of Pgp and/or CYP3A by clarithromycin may lead to increased exposure to colchicine (see section 4.3 and 4.4).

Digoxin

Digoxin is thought to be a substrate for the efflux transporter, P-glycoprotein (Pgp). Clarithromycin is known to inhibit Pgp. When clarithromycin and digoxin are administered together, inhibition of Pgp by clarithromycin may lead to increased exposure to digoxin. Elevated digoxin serum concentrations in patients receiving clarithromycin and digoxin concomitantly have also been reported in post-marketing surveillance. Some patients have shown clinical signs consistent with digoxin toxicity, including potentially fatal arrhythmias. Serum digoxin concentrations should be carefully monitored while patients are receiving digoxin and clarithromycin simultaneously.

Zidovudine

Simultaneous oral administration of clarithromycin tablets and zidovudine to HIV-infected adult patients may result in decreased steady-state zidovudine concentrations. Because clarithromycin appears to interfere with the absorption of simultaneously administered oral zidovudine, this interaction can be largely avoided by staggering the doses of clarithromycin and zidovudine to all for a 4-hour interval between each medication. This interaction does not appear to occur in paediatric HIV-infected patients taking clarithromycin suspension with zidovudine or dideoxyinosine. This interaction is unlikely when clarithromycin is administered via intravenous infusion.

Phenytoin and valproate

There have been spontaneous or published reports of interactions of CYP3A inhibitors, including clarithromycin with drugs not thought to be metabolised by CYP3A (e.g. phenytoin and valproate). Serum level determinations are recommended for these drugs when administered concomitantly with clarithromycin. Increased serum levels have been reported.

Bi-directional drug interactions

Atazanavir

Both clarithromycin and atazanavir are substrates and inhibitors of CYP3A, and there is evidence of a bi-directional drug interaction. Co-administration of clarithromycin (500 mg twice daily) with atazanavir (400 mg once daily) resulted in a 2-fold increase in exposure to clarithromycin and a 70% decrease in exposure to 14-OH-clarithromycin, with a 28% increase in the AUC of atazanavir. Because of the large therapeutic window for clarithromycin, no dosage reduction should be necessary in patients with normal renal function. For patients with moderate renal function (creatinine clearance 30 to 60 mL/min), the dose of clarithromycin should be decreased by 50%. For patients with creatinine clearance <30 mL/min, the dose of clarithromycin should be decreased by 75% using an appropriate clarithromycin formulation. Doses of clarithromycin greater than 1000 mg per day should not be co-administered with protease inhibitors.

Calcium Channel Blockers

Caution is advised regarding the concomitant administration of clarithromycin and calcium channel blockers metabolized by CYP3A4 (e.g. verapamil, amlodipine, diltiazem) due to the risk of hypotension. Plasma concentrations of clarithromycin as well as calcium channel blockers may increase due to the interaction. Hypotension, bradyarrhythmias and lactic acidosis have been observed in patients taking clarithromycin and verapamil concomitantly.

Itraconazole

Both clarithromycin and itraconazole are substrates and inhibitors of CYP3A, leading to a bi-directional drug interaction. Clarithromycin may increase the plasma levels of itraconazole, while itraconazole may increase the plasma levels of clarithromycin. Patients taking itraconazole and clarithromycin concomitantly should be monitored closely for signs or symptoms of increased or prolonged pharmacologic effect.

Saquinavir

Both clarithromycin and saquinavir are substrates and inhibitors of CYP3A, and there is evidence of a bi-directional drug interaction. Concomitant administration of clarithromycin (500 mg twice daily) and saquinavir (soft gelatin capsules, 1200 mg three times daily) to 12 healthy volunteers resulted in steady-state AUC and Cmax values of saquinavir which were 177% and 187% higher than those seen with saquinavir alone. Clarithromycin AUC and Cmax values were approximately 40% higher than those seen with clarithromycin alone. No dose adjustment is required when the two drugs are co-administered for a limited time at the doses/formulations studied. Observations from drug interaction studies using the soft gelatin capsule formulation may not be representative of the effects seen using the saquinavir hard gelatin capsule. Observations from drug interaction studies performed with saquinavir alone may not be representative of the effects seen with saquinavir/ritonavir therpy. When saquinavir is co-administered with ritonavir, consideration should be given to the potential effects of ritonavir on clarithromycin.

4.6. Pregnancy and lactation

Pregnancy

The safety of clarithromycin for use in pregnancy has not been established. Based on variable results obtained from animal studies and experience in humans, the possibility of adverse effects on embyofoetal development cannot be excluded. Some observational studies evaluating exposure to clarithromycin during the first and second trimester have reported an increased risk of miscarriage compared to no antibiotic use or other antibiotic use during the same period. The available epidemiological studies on the risk of major congenital malformations with use of macrolides including clarithromycin during pregnancy provide conflicting results. Therefore, use during pregnancy is not advised without carefully weighing the benefits against risks.

Lactation

The safety of clarithromycin use during breast-feeding of infants has not been established. Clarithromycin is excreted into human breast milk in small amounts. It has been estimated that an exclusively breastfed infant would receive about 1.7% of the maternal weight-adjusted dose of clarithromycin.

4.7. Effects on ability to drive and use machines

There are no data on the effect of clarithromycin on the ability to drive or use machines. The potential for dizziness, vertigo, confusion and disorientation, which may occur with the medication, should be taken into account before patients drive or use machines.

4.8. Undesirable effects

a. Summary of the safety profile

The most frequent and common adverse reactions related to clarithromycin therapy for both adult and paediatric populations are abdominal pain, diarrhoea, nausea, vomiting and taste perversion. These adverse reactions are usually mild in intensity and are consistent with the known safety profile of macrolide antibiotics. (see section b. of section 4.8)

There was no significant difference in the incidence of these gastrointestinal adverse reactions during clinical trials between the patient population with or without preexisting mycobacterial infections.

b. Tabulated summary of adverse reactions

The following table displays adverse reactions reported in clinical trials and from post-marketing experience with clarithromycin all formulations.

The reactions considered at least possibly related to clarithromycin are displayed by system organ class and frequency using the following convention: very common (≥1/10), common (≥1/100 to <1/10), uncommon (≥1/1,000 to <1/100) and not known (adverse reactions from post-marketing experience; frequency cannot be estimated from the available data). Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness when the seriousness could be assessed.

System Organ ClassVery common
≥1/10
Common
≥1/100 to <1/10
Uncommon
≥1/1,000 to <1/100
Not Known
(*cannot be
estimated from the
available data)
Infections and
infestations
  Cellulitis1,
candidiasis,
gastroenteritis2,
infection3, vaginal
infection
Pseudomembranous
colitis, erysipelas
Blood and
lymphatic system
  Leukopenia,
neutropenia4,
thrombocythemia3,
eosinophilia4
Agranulocytosis,
thrombocytopenia
Immune system
disorders
  Anaphylactoid
reaction1,
hypersensitivity
Anaphylactic
reaction,
angioedema
Metabolism and
nutrition
disorders
  Anorexia,
decreased appetite
 
Psychiatric
disorders
 InsomniaAnxiety,
nervousness3
Psychotic disorder,
confusional state,
depersonalisation, depression,
disorientation,
hallucination,
abnormal dreams,
mania
Nervous system
disorders
 Dysgeusia,
headache, taste
perversion
Loss of
consciousness1,
dyskinesia1,
dizziness,
somnolence6,
tremor
Convulsion,
ageusia, parosmia,
anosmia,
paraesthesia
Ear and labyrinth disorders   Vertigo, hearing
impaired, tinnitus
Deafness
Cardiac disorders   Cardiac arrest1,
atrial fibrillation1,
electrocardiogram
QT prolonged7,
extrasystoles1,
palpitations
Torsades de
pointes7, ventricular
tachycardia7,
ventricular
fibrillation
Vascular
disorders
 Vasodilation1  Haemorrhage8
Respiratory,
thoracic and
mediastinal
disorder
  Asthma1,
epistaxis2,
pulmonary
embolism1
 
Gastrointestinal disorders  Diarrhoea9,
vomiting,
dyspepsia,
nausea,
abdominal pain
Oesophagitis1,
gastroesophageal
reflux disease2,
gastritis,
proctalgia2,
stomatitis,
glossitis,
abdominal
distension4,
constipation, dry
mouth, eructation,
flatulence
Pancreatitis acute,
tongue
discolouration,
tooth discolouration
Hepatobiliary
disorders
 Liver function
test abnormal
Cholestasis4,
hepatitis4, alanine
aminotransferase
increased, aspartate
aminotransferase
increased, gamma-
glutamyltransferase
increased4
Hepatic failure10, jaundice
hepatocellular
Skin and
subcutaneous
tissue disorders
 Rash,
hyperhidrosis
Dermatitis
bullous1, pruritus,
urticaria, rash
maculo-papular3
Acute generalised
exanthematous
pustulosis (AGEP),
Stevens-Johnson
syndrome5, toxic
epidermal
necrolysis5,
drug rash with
eosinophilia and
systemic symptoms
(DRESS), acne
Musculoskeletal
and connective
tissue disorders
  Muscle spasms3,
musculoskeletal
stiffness1, myalgia2
Rhabdomyolysis2,11,
myopathy
Renal and
urinary disorders
  Blood creatinine
increased1, blood
urea increased1
Renal failure,
nephritis interstitial
General
disorders and
administration
site conditions
Injection site
phlebitis1
Injection site
pain1, injection
site inflammation1
Malaise4, pyrexia3,
asthenia, chest
pain4, chills4,
fatigue4
 
Investigations   Albumin globulin
ratio abnormal1,
blood alkaline
phosphatase
increased4, blood
lactate
dehydrogenase
increased4
International
normalised ratio
increased8,
prothrombin time
prolonged8, urine
colour abnormal

1 ADRs reported only for the Powder for Solution for Injection formulation
2 ADRs reported only for the Extended-Release Tablets formulation
3 ADRs reported only for the Granules for Oral Suspension formulation
4 ADRs reported only for the Immediate-Release Tablets formulation
5,7,9,10 See section a)
6,8,11 See section c)

c. Description of selected adverse reactions

In some of the reports of rhabdomyolysis, clarithromycin was administered concomitantly with statins, fibrates, colchicine or allopurinol (see section 4.3 and 4.4).

There have been post-marketing reports of drug interactions and central nervous system (CNS) effects (e.g. somnolence and confusion) with the concomitant use of clarithromycin and triazolam. Monitoring the patient for increased CNS pharmacological effects is suggested (see section 4.5).

There have been rare reports of clarithromycin extended-release tablets in the stool, many of which have occurred in patients with anatomic (including ileostomy or colostomy) or functional gastrointestinal disorders with shortened GI transit times. In several reports, tablet residues have occurred in the context of diarrhoea. It is recommended that patients who experience tablet residue in the stool and no improvement in their condition should be switched to a different clarithromycin formulation (e.g. suspension) or another antibiotic.

Special population: Adverse Reactions in Immunocompromised Pateints (see section e).

d. Paediatric populations

Clinical trials have been conducted using clarithromycin paediatric suspension in children 6 months to 12 years of age. Therefore, children under 12 years of age should use clarithromycin paediatric suspension.

Frequency, type and severity of adverse reactions in children are expected to be the same as in adults.

e. Other special populations

Immunocompromised patients

In AIDS and other immunocompromised patients treated with the higher doses of clarithromycin over long periods of time for mycobacterial infections, it was often difficult to distinguish adverse events possibly associated with clarithromycin administration from underlying signs of Human Immunodeficiency Virus (HIV) disease or intercurrent illness.

In adult patients, the most frequently reported adverse reactions by patients treated with total daily doses of 1000mg and 2000mg of clarithromycin were: nausea, vomiting, taste perversion, abdominal pain, diarrhoea, rash, flatulence, headache, constipation, hearing disturbance, Serum Glutamic Oxaloacetic Transaminase (SGOT) and Serum Glutamic Pyruvate Transaminase (SGPT) elevations. Additional low-frequency events included dyspnoea, insomnia and dry mouth. The incidences were comparable for patients treated with 1000mg and 2000mg, but were generally about 3 to 4 times as frequent for those patients who received total daily doses of 4000mg of clarithromycin.

In these immunocompromised patients evaluations of laboratory values were made by analysing those values outside the seriously abnormal level (i.e. the extreme high or low limit) for the specified test. On the basis of these criteria, about 2% to 3% of those patients who received 1000mg or 2000mg of clarithromycin daily had seriously abnormal elevated levels of SGOT and SGPT, and abnormally low white blood cell and platelet counts. A lower percentage of patients in these two dosage groups also had elevated Blood Urea Nitrogen (BUN) levels. Slightly higher incidences of abnormal values were noted for patients who received 4000mg daily for all parameters except White Bood Cell.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions to Pharmaceutical Services, Ministry of Health, CY-1475, www.moh.gov.cy/phs, Fax: +357 22608649.

6.2. Incompatibilities

None known.

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.