PRAVASTATIN SODIUM Tablet Ref.[7340] Active ingredients: Pravastatin

Source: Medicines & Healthcare Products Regulatory Agency (GB)  Revision Year: 2019  Publisher: Accord Healthcare Limited, Sage House, 319, Pinner Road, North Harrow, Middlesex HA1 4 HF, United Kingdom

Contraindications

Hypersensitivity to the active substance or to any of the excipients.

Active liver disease or unexplained, persistent elevations of serum transaminase elevation exceeding 3 times the upper limit of normal (ULN) (see section 4.4).

Pregnancy and lactation (see section 4.6).

Special warnings and precautions for use

Pravastatin has not been evaluated in patients with homozygous familial hypercholesterolaemia. Therapy is not suitable when hypercholesterolaemia is due to elevated HDL-cholesterol.

As for other HMG-CoA reductase inhibitors, combination of pravastatin with fibrates is not recommended.

Pravastatin must not be co-administered with systemic formulations of fusidic acid or within 7 days of stopping fusidic acid treatment. In patients where the use of systemic fusidic acid is considered essential, statin treatment should be discontinued throughout the duration of fusidic acid treatment. There have been reports of rhabdomyolysis (including some fatalities) in patients receiving fusidic acid and statins in combination (see section 4.5). The patient should be advised to seek medical advice immediately if they experience any symptoms of muscle weakness, pain or tenderness.

Statin therapy may be re-introduced seven days after the last dose of fusidic acid.

In exceptional circumstances, where prolonged systemic fusidic acid is needed, e.g. for the treatment of severe infections, the need for co-administration of Pravastatin Sodium and fusidic acid should only be considered on a case by case basis and under close medical supervision.

In children before puberty, the benefit/risk of treatment should be carefully evaluated by physicians before treatment initiation.

Hepatic disorders

As with other lipid-lowering agents, moderate increases in liver transaminase levels has been observed. In the majority of cases, liver transaminase levels have returned to their baseline value without the need for treatment discontinuation. Special attention should be given to patients who develop increased transaminase levels and therapy should be discontinued if increases in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) exceed three times the upper limit of normal and persist.

Caution should be exercised when pravastatin is administered to patients with a history of liver disease or heavy alcohol ingestion.

Muscle disorders

As with other HMG-CoA reductase inhibitors (statins), pravastatin has been associated with the onset of myalgia, myopathy and very rarely, rhabdomyolysis. Myopathy must be considered in any patient under statin therapy presenting with unexplained muscle symptoms such as pain or tenderness, muscle weakness, or muscle cramps. In such cases creatine kinase (CK) levels should be measured (see below). Statin therapy should be temporarily interrupted when CK levels are >5 x ULN or when there are severe clinical symptoms. Very rarely (in about 1 case over 100,000 patient-years), rhabdomyolysis occurs, with or without secondary renal insufficiency. Rhabdomyolysis is an acute potentially fatal condition of skeletal muscle, which may develop at any time during treatment and is characterised by massive muscle destruction associated with major increase in CK (usually >30 or 40 x ULN) leading to myoglobinuria.

The risk of myopathy with statins appears to be exposure- dependent and therefore may vary with individual drugs (due to lipophilicity and pharmacokinetic differences), including their dosage and potential for drug interactions.

Although there is no muscular contraindication to the prescription of a statin, certain predisposing factors may increase the risk of muscular toxicity and therefore justify a careful evaluation of the benefit/risk and special clinical monitoring. CK measurement is indicated before starting statin therapy in these patients (see below).

The risk and severity of muscular disorders during statin therapy is increased by the co-administration of interacting medicines. The use of fibrates alone is occasionally associated with myopathy. The combined use of a statin and fibrates should generally be avoided. The co-administration of statins and nicotinic acid should be used with caution. An increase in the incidence of myopathy has also been described in patients receiving other statins in combination with inhibitors of cytochrome P450 metabolism. This may result from pharmacokinetic interactions that have not been documented for pravastatin (see section 4.5). When associated with statin therapy, muscle symptoms usually resolve following discontinuation of statin therapy.

There have been very rare reports of an immune-mediated necrotizing myopathy (IMNM) during or after treatment with some statins. IMNM is clinically characterized by persistent proximal muscle weakness and elevated serum creatine kinase, which persist despite discontinuation of statin treatment.

Creatine kinase measurement and interpretation

Routine monitoring of creatine kinase (CK) or other muscle enzyme levels is not recommended in asymptomatic patients on statin therapy. However, measurement of CK is recommended before starting statin therapy in patients with special predisposing factors, and in patients developing muscular symptoms during statin therapy, as described below. If CK levels are significantly elevated at baseline (> 5x ULN), CK levels should be re-measured about 5 to 7 days later to confirm the results. When measured, CK levels should be interpreted in the context of other potential factors that can cause transient muscle damage, such as strenuous exercise or muscle trauma.

Before treatment initiation

Caution should be used in patients with predisposing factors such as renal impairment, hypothyroidism, previous history of muscular toxicity with a statin or fibrate, personal or familial history of hereditary muscular disorders, or alcohol abuse.

In these cases, CK levels should be measured prior to initiation of therapy. CK measurement should also be considered before starting treatment in persons over 70 years of age especially in the presence of other predisposing factors in this population. If CK levels are significantly elevated (>5 x ULN) at baseline, treatment should not be started and the results should be re-measured after 5-7 days. The baseline CK levels may also be useful as a reference in the event of a later increase during statin therapy.

During treatment

Patients should be advised to report promptly unexplained muscle pain, tenderness, weakness or cramps. In these cases, CK levels should be measured. If a markedly elevated (>5 x ULN) CK level is detected, statin therapy must be interrupted. Treatment discontinuation should also be considered if the muscular symptoms are severe and cause daily discomfort, even if the CK increase remains ≤5 x ULN. If symptoms resolve and CK levels return to normal, then reintroduction of statin therapy may be considered at the lowest dose and with close monitoring. If a hereditary muscular disease is suspected in such patients, restarting statin therapy is not recommended.

Interstitial lung disease

Exceptional cases of interstitial lung disease have been reported with some statins, especially with long term therapy (see section 4.8). Presenting features can include dyspnoea, non-productive cough and deterioration in general health (fatigue, weight loss and fever). If it is suspected a patient has developed interstitial lung disease, statin therapy should be discontinued.

Diabetes Mellitus

Some evidence suggests that statins as a class raise blood glucose and in some patients, at high risk of future diabetes, may produce a level of hyperglycaemia where formal diabetes care is appropriate. This risk, however, is outweighed by the reduction in vascular risk with statins and therefore should not be a reason for stopping statin treatment. Patients at risk (fasting glucose 5.6 to 6.9 mmol/L, BMI>30kg/m², raised triglycerides, hypertension) should be monitored both clinically and biochemically according to national guidelines.

Lactose

This product contains lactose. Patients with rare hereditary problems of galactose intolerance, the Lapp lactase deficiency or glucose-galactose malabsorption should not take this medicinal product.

Interaction with other medicinal products and other forms of interaction

The risk of myopathy including rhabdomyolysis may be increased by the concomitant administration of systemic fusidic acid with statins. The mechanism of this interaction (whether it is pharmacodynamic or pharmacokinetic, or both) is yet unknown. There have been reports of rhabdomyolysis (including some fatalities) in patients receiving this combination.

If treatment with systemic fusidic acid is necessary, Pravastatin treatment should be discontinued throughout the duration of the fusidic acid treatment. Also see section 4.4.

Fibrates: The use of fibrates alone is occasionally associated with myopathy. An increased risk of muscle related adverse events, including rhabdomyolysis, have been reported when fibrates are co-administered with other statins. These adverse events with pravastatin cannot be excluded, therefore the combined use of pravastatin and fibrates (e.g. gemfibrozil, fenofibrate) should generally be avoided (see section 4.4). If this combination is considered necessary, careful clinical and CK monitoring of patients on such regimen is required.

Colestyramine/Colestipol: Concomitant administration resulted in approximately 40 to 50% decrease in the bioavailability of pravastatin. There was no clinically significant decrease in bioavailability or therapeutic effect when pravastatin was administered one hour before or four hours after colestyramine or one hour before colestipol (see section 4.2).

Ciclosporin: Concomitant administration of pravastatin and ciclosporin leads to an approximately 4-fold increase in pravastatin systemic exposure. In some patients, however, the increase in pravastatin exposure may be larger. Clinical and biochemical monitoring of patients receiving this combination is recommended (see section 4.2).

Products metabolised by cytochrome P450: Pravastatin is not metabolised to a clinically significant extent by the cytochrome P450 system. This is why products that are metabolised by, or inhibitors of, the cytochrome P450 system can be added to a stable regimen of pravastatin without causing significant changes in the plasma levels of pravastatin as have been seen with other statins. The absence of a significant pharmacokinetic interaction with pravastatin has been specifically demonstrated for several products, particularly those that are substrates/inhibitors of CYP3A4 e.g. diltiazem, verapamil, itraconazole, ketoconazole, protease inhibitors, grapefruit juice and CYP2C9 inhibitors (e.g. fluconazole).

In one of the two interaction studies with pravastatin and erythromycin a statistically significant increase in pravastatin AUC (70%) and Cmax (121%) was observed. In a similar study with clarithromycin a statistically significant increase in AUC (110%) and Cmax (127%) was observed. Although these changes were minor, caution should be exercised when associating pravastatin with erythromycin or clarithromycin.

Other products: In interaction studies, no statistically significant differences in bioavailability were observed when pravastatin was administered with acetylsalicylic acid, antacids (when given one hour prior to pravastatin), nicotinic acid or probucol.

Vitamin K antagonists: As with other HMG-CoA reductase inhibitors, the initiation of treatment or dosage up-titration of Pravastatin in patients treated concomitantly with vitamin K antagonists (e.g. warfarin or another coumarin anticoagulant) may result in an increase in International Normalised Ratio (INR). Discontinuation or down-titration of Pravastatin may result in a decrease in INR. In such situations, appropriate monitoring of INR is needed.

Warfarin and other oral anticoagulants: Bioavailability parameters at steady state for pravastatin were not altered following administration with warfarin. Chronic dosing of the two products did not produce any changes in the anticoagulant action of warfarin.

Pregnancy and lactation

Pregnancy

Pravastatin is contraindicated during pregnancy and should be administered to women of childbearing potential only when such patients are unlikely to conceive and have been informed of the potential risk. Special caution is recommended in adolescent females of childbearing potential to ensure proper understanding of the potential risk associated with pravastatin therapy during pregnancy. If a patient plans to become pregnant or becomes pregnant, the doctor has to be informed immediately and pravastatin should be discontinued because of the potential risk to the foetus.

Lactation

A small amount of pravastatin is excreted in human breast milk, therefore pravastatin is contraindicated during breastfeeding (see section 4.3).

Effects on ability to drive and use machines

Pravastatin has no or negligible influence on the ability to drive and use machines. However, when driving vehicles or operating machines, it should be taken into account that dizziness and visual disturbances may occur during treatment.

Undesirable effects

The frequencies of adverse events are ranked according to the following: very common (≥1/10); common (≥1/100, <1/10); uncommon (≥/1000, <1/100); rare (≥1/10,000, <1/1,000); very rare (<1/10,000); Within each frequency grouping, undesirable effects are presented in order of decreasing seriousness.

Clinical trials: Pravastatin has been studied at 40 mg in seven randomised double-blind placebo-controlled trials involving over 21,000 patients treated with pravastatin (n=10764) or placebo (n=10719), representing over 47,000 patients years of exposure to pravastatin. Over 19,000 patients were followed for a median of 4.8-5.9 years.

The following adverse drug reactions were reported; none of them occurred at a rate in excess of 0.3% in the pravastatin group compared to the placebo group.

Nervous system disorders

Uncommon: dizziness, headache, sleep disturbance, insomnia.

Eye disorders

Uncommon: vision disturbance (including blurred vision and diplopia).

Gastrointestinal disorders

Uncommon: dyspepsia/heartburn, abdominal pain, nausea/vomiting, constipation, diarrhoea, flatulence.

Skin and subcutaneous tissue disorders

Uncommon: pruritus, rash, urticaria, scalp/hair abnormality (including alopecia), dermatomyositis.

Renal and urinary disorders

Uncommon: abnormal urination (including dysuria, frequency, nocturia)

Reproductive system and breast disorders

Uncommon: sexual dysfunction.

General disorders

Uncommon: fatigue.

Events of special clinical interest

Skeletal muscle

Effects on the skeletal muscle, e.g. musculoskeletal pain including arthralgia, muscle cramps, myalgia, muscle weakness and elevated CK levels have been reported in clinical trials. The rate of myalgia (1.4% pravastatin vs 1.4% placebo) and muscle weakness (0.1% pravastatin vs <0.1% placebo) and the incidence of CK level >3 x ULN and > 10 x ULN in CARE, WOSCOPS and LIPID was similar to placebo (1.6% pravastatin vs 1.6% placebo and 1.0% pravastatin vs 1.0% placebo, respectively) (see section 4.4).

Liver effects

Elevations of serum transaminases have been reported. In the three long-term, placebo-controlled clinical trials CARE, WOSCOPS and LIPID, marked abnormalities of ALT and AST (>3 x ULN) occurred at similar frequency (≤1.2%) in both treatment groups.

Post marketing

In addition to the above the following adverse events have been reported during post marketing experience of pravastatin:

Nervous system disorders

Very rare: peripheral polyneuropathy, in particular if used for long period of time, paresthesia

Immune system disorders

Very rare: Hypersensitivity reactions: anaphylaxis, angioedema, lupus erythematous- like syndrome

Gastrointestinal disorders

Very rare: pancreatitis

Hepatobiliary disorders

Very rare: jaundice, hepatitis, fulminant hepatic necrosis.

Musculoskeletal and connective tissue disorders

Very rare: rhabdomyolysis, which can be associated with acute renal failure secondary to myoglobinuria, myopathy (see section 4.4) myositis, polymyositis

Frequency not known: Immune-mediated necrotizing myopathy (see section 4.4)

Isolated cases of tendon disorders, sometimes complicated by rupture.

Class Effects:

  • Nightmares
  • Memory loss
  • Depression
  • Exceptional cases of interstitial lung disease, especially with long term therapy (see section 4.4)
  • Endocrine disorders
  • Diabetes Mellitus: Frequency will depend on the presence or absence of risk factors (fasting blood glucose ≥5.6 mmol/L, BMI>30kg/m², raised triglycerides, history of hypertension).

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via Yellow Card Scheme. Website: www.mhra.gov.uk/yellowcard or search for MHRA Yellow Card in the Google Play or Apple App Store.

Incompatibilities

Not applicable.

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.