Source: FDA, National Drug Code (US) Revision Year: 2020
PRINIVIL is contraindicated in patients with:
Do not coadminister aliskiren with PRINIVIL in patients with diabetes [see Drug Interactions (7.4)].
PRINIVIL is contraindicated in combination with a neprilysin inhibitor (e.g., sacubitril). Do not administer PRINIVIL within 36 hours of switching to or from sacubitril/valsartan, a product containing a neprilysin inhibitor [see Warnings and Precautions (5.2) and Drug Interactions (7.8)].
Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. Resulting oligohydramnios can be associated with fetal lung hypoplasia and skeletal deformations. Potential neonatal adverse effects include skull hypoplasia, anuria, hypotension, renal failure, and death. When pregnancy is detected, discontinue PRINIVIL as soon as possible [see Use in Specific Populations (8.1)].
Head and Neck Angioedema:
Angioedema of the face, extremities, lips, tongue, glottis and/or larynx, including some fatal reactions, have occurred in patients treated with angiotensin converting enzyme inhibitors, including PRINIVIL, at any time during treatment. Patients with involvement of the tongue, glottis or larynx are likely to experience airway obstruction, especially those with a history of airway surgery. PRINIVIL should be promptly discontinued and appropriate therapy and monitoring should be provided until complete and sustained resolution of signs and symptoms of angioedema has occurred.
Patients with a history of angioedema unrelated to ACE inhibitor therapy may be at increased risk of angioedema while receiving an ACE inhibitor [see Contraindications (4)]. ACE inhibitors have been associated with a higher rate of angioedema in Black than in non-Black patients.
Patients receiving concomitant ACE inhibitor and mTOR (mammalian target of rapamycin) inhibitor (e.g., temsirolimus, sirolimus, everolimus) therapy may be at increased risk for angioedema [see Drug Interactions (7.7)].
Patients receiving concomitant ACE inhibitor and neprilysin inhibitor therapy may be at increased risk for angioedema [see Contraindications (4) and Drug Interactions (7.8)].
Intestinal Angioedema:
Intestinal angioedema has occurred in patients treated with ACE inhibitors. These patients presented with abdominal pain (with or without nausea or vomiting); in some cases there was no prior history of facial angioedema and C-1 esterase levels were normal. In some cases, the angioedema was diagnosed by procedures including abdominal CT scan or ultrasound, or at surgery, and symptoms resolved after stopping the ACE inhibitor.
Anaphylactoid Reactions During Desensitization:
Two patients undergoing desensitizing treatment with Hymenoptera venom while receiving ACE inhibitors sustained life-threatening anaphylactoid reactions.
Anaphylactoid Reactions During Dialysis:
Sudden and potentially life-threatening anaphylactoid reactions have occurred in some patients dialyzed with high-flux membranes and treated concomitantly with an ACE inhibitor. In such patients, dialysis must be stopped immediately, and aggressive therapy for anaphylactoid reactions must be initiated. Symptoms have not been relieved by antihistamines in these situations. In these patients, consideration should be given to using a different type of dialysis membrane or a different class of antihypertensive agent. Anaphylactoid reactions have also been reported in patients undergoing low-density lipoprotein apheresis with dextran sulfate absorption.
Monitor renal function periodically in patients treated with PRINIVIL. Changes in renal function including acute renal failure can be caused by drugs that inhibit the renin-angiotensin system. Patients whose renal function may depend in part on the activity of the renin-angiotensin system (e.g., patients with renal artery stenosis, chronic kidney disease, severe congestive heart failure, post-myocardial infarction or volume depletion) may be at particular risk of developing acute renal failure on PRINIVIL. Consider withholding or discontinuing therapy in patients who develop a clinically significant decrease in renal function on PRINIVIL [see Adverse Reactions (6.1) and Drug Interactions (7.4)].
PRINIVIL can cause symptomatic hypotension, sometimes complicated by oliguria, progressive azotemia, acute renal failure or death. Patients at risk of excessive hypotension include those with the following conditions or characteristics: heart failure with systolic blood pressure below 100 mmHg, ischemic heart disease, cerebrovascular disease, hyponatremia, high dose diuretic therapy, renal dialysis, or severe volume and/or salt depletion of any etiology.
In these patients, start PRINIVIL under medical supervision and follow such patients for the first two weeks of treatment and whenever the dose of PRINIVIL and/or diuretic is increased. Avoid use of PRINIVIL in patients who are hemodynamically unstable after acute MI.
Symptomatic hypotension is also possible in patients with severe aortic stenosis or hypertrophic cardiomyopathy.
In patients undergoing major surgery or during anesthesia with agents that produce hypotension, PRINIVIL may block angiotensin II formation secondary to compensatory renin release. If hypotension occurs and is considered to be due to this mechanism, it can be corrected by volume expansion.
Monitor serum potassium periodically in patients receiving PRINIVIL. Drugs that inhibit the renin-angiotensin system can cause hyperkalemia. Risk factors for the development of hyperkalemia include renal insufficiency, diabetes mellitus, and the concomitant use of potassium-sparing diuretics, potassium supplements, potassium-containing salt substitutes, or other drugs that may increase serum potassium [see Drug Interactions (7.1)].
ACE inhibitors have been associated with a syndrome that starts with cholestatic jaundice or hepatitis and progresses to fulminant hepatic necrosis and sometimes death. The mechanism of this syndrome is not understood. Patients receiving ACE inhibitors who develop jaundice or marked elevations of hepatic enzymes should discontinue the ACE inhibitor and receive appropriate medical treatment.
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in the clinical studies of a drug cannot be directly compared to rates in the clinical studies of another drug and may not reflect the rates observed in practice.
The following adverse reactions (events 2% greater on PRINIVIL than on placebo) were observed with PRINIVIL vs placebo: headache (5.7% vs 1.9%), dizziness (5.4% vs 1.9%), cough (3.5% vs 1.0%).
In controlled studies in patients with heart failure, therapy was discontinued in 8.1% of patients treated with PRINIVIL for 12 weeks, compared to 7.7% of patients treated with placebo for 12 weeks.
The following adverse reactions (events 2% greater on PRINIVIL than on placebo) were observed with PRINIVIL vs placebo: hypotension (4.4% vs 0.6%), chest pain (3.4% vs 1.3%).
In the ATLAS trial [see Clinical Studies (14.2)] in heart failure patients, withdrawals for adverse reactions were similar in the low- and high-dose groups. The following adverse reactions, mostly related to ACE inhibition, were reported more commonly in the high dose group:
Table 1. Dose-related Adverse Drug Reactions: ATLAS trial:
High Dose (n=1568) | Low Dose (n=1596) | |
---|---|---|
Dizziness | 19% | 12% |
Hypotension | 11% | 7% |
Creatinine increased | 10% | 7% |
Hyperkalemia | 6% | 4% |
Syncope | 7% | 5% |
Patients in the GISSI-3 study, treated with PRINIVIL, had a higher incidence of hypotension (9.0% vs 3.7%) and renal dysfunction (2.4% vs 1.1%) compared with patients not taking PRINIVIL.
Other clinical adverse reactions occurring in 1% or higher of patients with hypertension or heart failure treated with PRINIVIL in controlled clinical trials and do not appear in other sections of labeling are listed below:
Body as a whole: Fatigue, asthenia, orthostatic effects.
Digestive: Pancreatitis, constipation, flatulence, dry mouth, diarrhea.
Hematologic: Rare cases of bone marrow depression, hemolytic anemia, leukopenia/neutropenia and thrombocytopenia.
Endocrine: Diabetes mellitus, inappropriate antidiuretic hormone secretion.
Metabolic: Gout
Skin: Urticaria, alopecia, photosensitivity, erythema, flushing, diaphoresis, cutaneous pseudolymphoma, toxic epidermal necrolysis, Stevens–Johnson syndrome, and pruritus.
Special Senses: Visual loss, diplopia, blurred vision, tinnitus, photophobia, taste disturbances, olfactory disturbances.
Urogenital: Impotence
Miscellaneous: A symptom complex has been reported which may include a positive ANA, an elevated erythrocyte sedimentation rate, arthralgia/arthritis, myalgia, fever, vasculitis, eosinophilia, leukocytosis, paresthesia and vertigo. Rash, photosensitivity or other dermatological manifestations may occur alone or in combination with these symptoms.
In clinical trials hyperkalemia (serum potassium >5.7 mEq/L) occurred in 2.2% and 4.8% of PRINIVIL-treated patients with hypertension and heart failure, respectively [see Warnings and Precautions (5.5)].
Minor increases in blood urea nitrogen and serum creatinine, reversible upon discontinuation of therapy, were observed in about 2% of patients with hypertension treated with PRINIVIL alone. Increases were more common in patients receiving concomitant diuretics and in patients with renal artery stenosis [see Warnings and Precautions (5.4)]. Reversible minor increases in blood urea nitrogen and serum creatinine were observed in 11.6% of patients with heart failure on concomitant diuretic therapy. Frequently, these abnormalities resolved when the dosage of the diuretic was decreased.
Patients with acute myocardial infarction in the GISSI-3 trial treated with PRINIVIL had a higher (2.4% versus 1.1% in placebo) incidence of renal dysfunction in-hospital and at 6 weeks (increasing creatinine concentration to over 3 mg/dL or a doubling or more of the baseline serum creatinine concentration).
Small decreases in hemoglobin (mean 0.4 mg/dL) and hematocrit (mean 1.3%) occurred frequently in patients treated with PRINIVIL but were rarely of clinical importance in patients without some other cause of anemia. In clinical trials, fewer than 0.1% of patients discontinued therapy for anemia.
Rarely, elevations of liver enzymes and/or serum bilirubin have occurred [see Warnings and Precautions (5.6)].
The following adverse reactions have been identified during post-approval use of lisinopril that are not included in other sections of labeling. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.
Other reactions include:
Metabolism and nutrition disorders:
Hyponatremia [see Warnings and Precautions (5.4)], cases of hypoglycemia in diabetic patients on oral antidiabetic agents or insulin [see Drug Interactions (7.2)]
Nervous system and psychiatric disorders:
Mood alterations (including depressive symptoms), mental confusion
Initiation of PRINIVIL in patients on diuretics may result in excessive reduction of blood pressure. The possibility of hypotensive effects with PRINIVIL can be minimized by either decreasing or discontinuing the diuretic or increasing the salt intake prior to initiation of treatment with PRINIVIL. If this is not possible, reduce the starting dose of PRINIVIL [see Dosage and Administration (2.2) and Warnings and Precautions (5.4)].
PRINIVIL attenuates potassium loss caused by thiazide-type diuretics. Potassium-sparing diuretics (spironolactone, amiloride, triamterene, and others) or other drugs that may increase serum potassium can increase the risk of hyperkalemia. Therefore, if concomitant use of such agents is indicated, monitor the patient’s serum potassium frequently.
Concomitant administration of PRINIVIL and antidiabetic medicines (insulins, oral hypoglycemic agents) may cause an increased blood-glucose-lowering effect with risk of hypoglycemia.
In patients who are elderly, volume-depleted (including those on diuretic therapy), or with compromised renal function, coadministration of NSAIDs, including selective COX-2 inhibitors, with ACE inhibitors, including lisinopril, may result in deterioration of renal function, including possible acute renal failure. These effects are usually reversible. Monitor renal function periodically in patients receiving lisinopril and NSAID therapy.
The antihypertensive effect of ACE inhibitors, including lisinopril, may be attenuated by NSAIDs.
Dual blockade of the RAS with angiotensin receptor blockers, ACE inhibitors, or direct renin inhibitors (such as aliskiren) is associated with increased risks of hypotension, syncope, hyperkalemia, and changes in renal function (including acute renal failure) compared to monotherapy.
The Veterans Affairs Nephropathy in Diabetes (VA NEPHRON-D) trial enrolled 1448 patients with type 2 diabetes, elevated urinary-albumin-to-creatinine ratio, and decreased estimated glomerular filtration rate (GFR 30 to 89.9 ml/min), randomized them to lisinopril or placebo on a background of losartan therapy and followed them for a median of 2.2 years. Patients receiving the combination of losartan and lisinopril did not obtain any additional benefit compared to monotherapy for the combined endpoint of decline in GFR, end stage renal disease, or death, but experienced an increased incidence of hyperkalemia and acute kidney injury compared with the monotherapy group.
In general, avoid combined use of RAS inhibitors. Monitor blood pressure, renal function and electrolytes in patients on PRINIVIL and other agents that affect the RAS.
Do not coadminister aliskiren with PRINIVIL in patients with diabetes. Avoid use of aliskiren with PRINIVIL in patients with renal impairment (GFR <60 ml/min).
Lithium toxicity has been reported in patients receiving lithium concomitantly with drugs, which cause elimination of sodium, including ACE inhibitors. Lithium toxicity was usually reversible upon discontinuation of lithium and the ACE inhibitor. Monitor serum lithium levels during concurrent use.
Nitritoid reactions (symptoms include facial flushing, nausea, vomiting and hypotension) have been reported rarely in patients on therapy with injectable gold (sodium aurothiomalate) and concomitant ACE inhibitor therapy including PRINIVIL.
Patients taking concomitant mTOR inhibitor (e.g., temsirolimus, sirolimus, everolimus) therapy may be at increased risk for angioedema [see Warnings and Precautions (5.2)].
Patients taking a concomitant neprilysin inhibitor (e.g., sacubitril) may be at increased risk for angioedema [see Contraindications (4) and Warnings and Precautions (5.2)].
Prinivil can cause fetal harm when administered to a pregnant woman. Use of drugs that act on the renin-angiotensin system during the second and third trimesters of pregnancy reduces fetal renal function and increases fetal and neonatal morbidity and death. When pregnancy is detected, discontinue PRINIVIL as soon as possible. Most epidemiologic studies examining fetal abnormalities after exposure to antihypertensive use in the first trimester have not distinguished drugs affecting the renin-angiotensin system from other antihypertensive agents. When pregnancy is detected, discontinue PRINIVIL as soon as possible.
The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. All pregnancies have a background risk of birth defect, loss, or other adverse outcomes. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively.
Hypertension in pregnancy increases the maternal risk for pre-eclampsia, gestational diabetes, premature delivery, and delivery complications (e.g., need for cesarean section, and post-partum hemorrhage). Hypertension increases the fetal risk for intrauterine growth restriction and intrauterine death. Pregnant women with hypertension should be carefully monitored and managed accordingly.
Oligohydramnios in pregnant women who use drugs affecting the renin-angiotensin system in the second and third trimesters of pregnancy can result in the following: reduced fetal renal function leading to anuria and renal failure, fetal lung hypoplasia and skeletal deformations, including skull hypoplasia, hypotension, and death. If oligohydramnios is observed, discontinue PRINIVIL, unless it is considered lifesaving for the mother. In the unusual case that there is no appropriate alternative therapy to drugs affecting the renin-angiotensin system for a particular patient, apprise the mother of the potential risk to the fetus.
Perform serial ultrasound examinations to assess the intra-amniotic environment. Fetal testing may be appropriate, based on the week of pregnancy. Patients and physicians should be aware, however, that oligohydramnios may not appear until after the fetus has sustained irreversible injury. Closely observe infants with histories of in utero exposure to PRINIVIL for hypotension, oliguria, and hyperkalemia. If oliguria or hypotension occurs in neonates with a history of in utero exposure to PRINIVIL, support blood pressure and renal perfusion. Exchange transfusions or dialysis may be required as a means of reversing hypotension and/or substituting for disordered renal function.
No data are available regarding the presence of lisinopril in human milk or the effects of lisinopril on the breastfed infant or on milk production. Lisinopril is present in rat milk. Because many drugs are secreted in human milk, and because of the potential for serious adverse reactions in the breastfed infants from ACE inhibitors, discontinue breastfeeding or discontinue PRINIVIL.
Antihypertensive effects and safety of PRINIVIL have been established in pediatric patients aged 6 to 16 years [see Dosage and Administration (2.1) and Clinical Studies (14.1)]. No relevant differences between the adverse reaction profile for pediatric patients and adult patients were identified.
Safety and effectiveness of PRINIVIL have not been established in pediatric patients under the age of 6 or in pediatric patients with glomerular filtration rate <30 mL/min/1.73 m² [see Clinical Pharmacology (12.3) and Clinical Studies (14.1)].
If oliguria or hypotension occurs, direct attention toward support of blood pressure and renal perfusion.
Exchange transfusions or dialysis may be required as a means of reversing hypotension and/or substituting for disordered renal function.
No dosage adjustment with PRINIVIL is necessary in elderly patients. In a clinical study of PRINIVIL in patients with myocardial infarctions (GISSI-3 Trial) 4,413 (47%) were 65 and over, while 1,656 (18%) were 75 and over. In this study, 4.8% of patients aged 75 years and older discontinued PRINIVIL treatment because of renal dysfunction vs. 1.3% of patients younger than 75 years. No other differences in safety or effectiveness were observed between elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out.
Dose adjustment of PRINIVIL is required in patients undergoing hemodialysis or whose creatinine clearance is ≤30 mL/min. No dose adjustment of PRINIVIL is required in patients with creatinine clearance >30 mL/min [see Dosage and Administration (2.4) and Clinical Pharmacology (12.3)].
ACE inhibitors, including PRINIVIL, have an effect on blood pressure that is less in Black patients than in non-Blacks.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.