Source: European Medicines Agency (EU) Revision Year: 2021 Publisher: Les Laboratoires Servier, 50, rue Carnot, 92284 Suresnes cedex, France
Ivabradine is indicated only for symptomatic treatment of chronic stable angina pectoris because ivabradine has no benefits on cardiovascular outcomes, e.g. myocardial infarction or cardiovascular death (see section 5.1).
Given that the heart rate may fluctuate considerably over time, serial heart rate measurements, ECG or ambulatory 24-hour monitoring should be considered when determining resting heart rate before initiation of ivabradine treatment and in patients on treatment with ivabradine when titration is considered. This also applies to patients with a low heart rate, in particular when heart rate decreases below 50 bpm, or after dose reduction (see section 4.2).
Ivabradine is not effective in the treatment or prevention of cardiac arrhythmias and likely loses its efficacy when a tachyarrhythmia occurs (eg. ventricular or supraventricular tachycardia). Ivabradine is therefore not recommended in patients with atrial fibrillation or other cardiac arrhythmias that interfere with sinus node function.
In patients treated with ivabradine the risk of developing atrial fibrillation is increased (see section 4.8). Atrial fibrillation has been more common in patients using concomitantly amiodarone or potent class I anti-arrhythmics. It is recommended to regularly clinically monitor ivabradine treated patients for the occurrence of atrial fibrillation (sustained or paroxysmal), which should also include ECG monitoring if clinically indicated (e.g. in case of exacerbated angina, palpitations, irregular pulse).
Patients should be informed of signs and symptoms of atrial fibrillation and be advised to contact their physician if these occur.
If atrial fibrillation develops during treatment, the balance of benefits and risks of continued ivabradine treatment should be carefully reconsidered.
Chronic heart failure patients with intraventricular conduction defects (bundle branch block left, bundle branch block right) and ventricular dyssynchrony should be monitored closely.
Ivabradine is not recommended in patients with AV-block of 2nd degree.
Ivabradine must not be initiated in patients with a pre-treatment resting heart rate below 70 beats per minute (bpm) (see section 4.3).
If, during treatment, resting heart rate decreases persistently below 50 bpm or the patient experiences symptoms related to bradycardia such as dizziness, fatigue or hypotension, the dose must be titrated downward or treatment discontinued if heart rate below 50 bpm or symptoms of bradycardia persist (see section 4.2).
Concomitant use of ivabradine with heart rate reducing calcium channel blockers such as verapamil or diltiazem is contraindicated (see sections 4.3 and 4.5). No safety issue has been raised on the combination of ivabradine with nitrates and dihydropyridine calcium channel blockers such as amlodipine. Additional efficacy of ivabradine in combination with dihydropyridine calcium channel blockers has not been established (see section 5.1).
Heart failure must be stable before considering ivabradine treatment. Ivabradine should be used with caution in heart failure patients with NYHA functional classification IV due to limited amount of data in this population.
The use of ivabradine is not recommended immediately after a stroke since no data is available in these situations.
Ivabradine influences retinal function. There is no evidence of a toxic effect of long-term ivabradine treatment on the retina (see section 5.1). Cessation of treatment should be considered if any unexpected deterioration in visual function occurs. Caution should be exercised in patients with retinitis pigmentosa.
Limited data are available in patients with mild to moderate hypotension, and ivabradine should therefore be used with caution in these patients. Ivabradine is contraindicated in patients with severe hypotension (blood pressure <90/50 mmHg) (see section 4.3).
There is no evidence of risk of (excessive) bradycardia on return to sinus rhythm when pharmacological cardioversion is initiated in patients treated with ivabradine. However, in the absence of extensive data, non urgent DC-cardioversion should be considered 24 hours after the last dose of ivabradine.
The use of ivabradine in patients with congenital QT syndrome or treated with QT prolonging medicinal products should be avoided (see section 4.5). If the combination appears necessary, close cardiac monitoring is needed.
Heart rate reduction, as caused by ivabradine, may exacerbate QT prolongation, which may give rise to severe arrhythmias, in particular Torsade de pointes.
When treatment modifications are made in chronic heart failure patients treated with ivabradine, blood pressure should be monitored at an appropriate interval (see section 4.8).
This medicinal product contains lactose. Patients with rare hereditary problems of galactose intolerance, total lactase deficiency or glucose-galactose malabsorption should not take this medicinal product.
The concomitant use of cardiovascular and non cardiovascular QT prolonging medicinal products with ivabradine should be avoided since QT prolongation may be exacerbated by heart rate reduction. If the combination appears necessary, close cardiac monitoring is needed (see section 4.4).
Hypokalemia can increase the risk of arrhythmia. As ivabradine may cause bradycardia, the resulting combination of hypokalemia and bradycardia is a predisposing factor to the onset of severe arrhythmias, especially in patients with long QT syndrome, whether congenital or substance-induced.
Ivabradine is metabolised by CYP3A4 only and it is a very weak inhibitor of this cytochrome. Ivabradine was shown not to influence the metabolism and plasma concentrations of other CYP3A4 substrates (mild, moderate and strong inhibitors). CYP3A4 inhibitors and inducers are liable to interact with ivabradine and influence its metabolism and pharmacokinetics to a clinically significant extent. Interaction studies have established that CYP3A4 inhibitors increase ivabradine plasma concentrations, while inducers decrease them. Increased plasma concentrations of ivabradine may be associated with the risk of excessive bradycardia (see section 4.4).
The concomitant use of potent CYP3A4 inhibitors such as azole antifungals (ketoconazole, itraconazole), macrolide antibiotics (clarithromycin, erythromycin per os, josamycin, telithromycin), HIV protease inhibitors (nelfinavir, ritonavir) and nefazodone is contraindicated (see section 4.3). The potent CYP3A4 inhibitors ketoconazole (200 mg once daily) and josamycin (1 g twice daily) increased ivabradine mean plasma exposure by 7 to 8 fold.
Specific interaction studies in healthy volunteers and patients have shown that the combination of ivabradine with the heart rate reducing agents diltiazem or verapamil resulted in an increase in ivabradine exposure (2 to 3 fold increase in AUC) and an additional heart rate reduction of 5 bpm. The concomitant use of ivabradine with these medicinal products is contraindicated (see section 4.3).
Ivabradine exposure was increased by 2-fold following the co-administration with grapefruit juice. Therefore the intake of grapefruit juice should be avoided.
The concomitant use of ivabradine with other moderate CYP3A4 inhibitors (e.g. fluconazole) may be considered at the starting dose of 2.5 mg twice daily and if resting heart rate is above 70 bpm, with monitoring of heart rate.
CYP3A4 inducers (e.g. rifampicin, barbiturates, phenytoin, Hypericum perforatum [St John’s Wort]) may decrease ivabradine exposure and activity. The concomitant use of CYP3A4 inducing medicinal products may require an adjustment of the dose of ivabradine. The combination of ivabradine 10 mg twice daily with St John’s Wort was shown to reduce ivabradine AUC by half. The intake of St John’s Wort should be restricted during the treatment with ivabradine.
Specific interaction studies have shown no clinically significant effect of the following medicinal products on pharmacokinetics and pharmacodynamics of ivabradine: proton pump inhibitors (omeprazole, lansoprazole), sildenafil, HMG CoA reductase inhibitors (simvastatin), dihydropyridine calcium channel blockers (amlodipine, lacidipine), digoxin and warfarin. In addition there was no clinically significant effect of ivabradine on the pharmacokinetics of simvastatin, amlodipine, lacidipine, on the pharmacokinetics and pharmacodynamics of digoxin, warfarin and on the pharmacodynamics of aspirin.
In pivotal phase III clinical trials the following medicinal products were routinely combined with ivabradine with no evidence of safety concerns: angiotensin converting enzyme inhibitors, angiotensin II antagonists, beta-blockers, diuretics, anti-aldosterone agents, short and long acting nitrates, HMG CoA reductase inhibitors, fibrates, proton pump inhibitors, oral antidiabetics, aspirin and other antiplatelet medicinal products.
Interaction studies have only been performed in adults.
Women of childbearing potential should use appropriate contraceptive measures during treatment (see section 4.3).
There are no or limited amount of data from the use of ivabradine in pregnant women. Studies in animals have shown reproductive toxicity. These studies have shown embryotoxic and teratogenic effects (see section 5.3). The potential risk for humans is unknown. Therefore, ivabradine is contraindicated during pregnancy (see section 4.3).
Animal studies indicate that ivabradine is excreted in milk. Therefore, ivabradine is contraindicated during breast-feeding (see section 4.3).
Women that need treatment with ivabradine should stop breast-feeding, and choose for another way of feeding their child.
Studies in rats have shown no effect on fertility in males and females (see section 5.3).
Ivabradine has no or negligible influence on the ability to use machines.
A specific study to assess the possible influence of ivabradine on driving performance has been performed in healthy volunteers where no alteration of the driving performance was evidenced. However, in post-marketing experience, cases of impaired driving ability due to visual symptoms have been reported. Ivabradine may cause transient luminous phenomena consisting mainly of phosphenes (see section 4.8). The possible occurrence of such luminous phenomena should be taken into account when driving or using machines in situations where sudden variations in light intensity may occur, especially when driving at night.
The most common adverse reactions with ivabradine are luminous phenomena (phosphenes) (14.5%) and bradycardia (3.3%). They are dose dependent and related to the pharmacological effect of the medicinal product.
The following adverse reactions have been reported during clinical trials and are ranked using the following frequency: very common (≥1/10); common (≥1/100 to <1/10); uncommon (≥1/1,000 to <1/100); rare (≥1/10,000 to <1/1,000); very rare (<1/10,000); not known (cannot be estimated from the available data).
System Organ Class | Frequency | Preferred Term |
---|---|---|
Blood and lymphatic system disorders | Uncommon | Eosinophilia |
Metabolism and nutrition disorders | Uncommon | Hyperuricaemia |
Nervous system disorders | Common | Headache, generally during the first month of treatment Dizziness, possibly related to bradycardia |
Uncommon* | Syncope, possibly related to bradycardia | |
Eye disorders | Very common | Luminous phenomena (phosphenes) |
Common | Blurred vision | |
Uncommon* | Diplopia Visual impairment | |
Ear and labyrinth disorders | Uncommon | Vertigo |
Cardiac disorders | Common | Bradycardia AV 1st degree block (ECG prolonged PQ interval) Ventricular extrasystoles Atrial fibrillation |
Uncommon | Palpitations, supraventricular extrasystoles, ECG prolonged QT interval | |
Very rare | AV 2nd degree block, AV 3rd degree block Sick sinus syndrome | |
Vascular disorders | Common | Uncontrolled blood pressure |
Uncommon* | Hypotension, possibly related to bradycardia | |
Respiratory, thoracic and mediastinal disorders | Uncommon | Dyspnoea |
Gastrointestinal disorders | Uncommon | Nausea Constipation Diarrhoea Abdominal pain* |
Skin and subcutaneous tissue disorders | Uncommon* | Angioedema Rash |
Rare* | Erythema Pruritus Urticaria | |
Musculoskeletal and connective tissue disorders | Uncommon | Muscle spasms |
Renal and urinary disorders | Uncommon | Elevated creatinine in blood |
General disorders and administration site conditions | Uncommon* | Asthenia, possibly related to bradycardia Fatigue, possibly related to bradycardia |
Rare* | Malaise, possibly related to bradycardia |
* Frequency calculated from clinical trials for adverse events detected from spontaneous report.
Luminous phenomena (phosphenes) were reported by 14.5% of patients, described as a transient enhanced brightness in a limited area of the visual field. They are usually triggered by sudden variations in light intensity. Phosphenes may also be described as a halo, image decomposition (stroboscopic or kaleidoscopic effects), coloured bright lights, or multiple image (retinal persistency). The onset of phosphenes is generally within the first two months of treatment after which they may occur repeatedly. Phosphenes were generally reported to be of mild to moderate intensity. All phosphenes resolved during or after treatment, of which a majority (77.5%) resolved during treatment. Fewer than 1% of patients changed their daily routine or discontinued the treatment in relation with phosphenes.
Bradycardia was reported by 3.3% of patients particularly within the first 2 to 3 months of treatment initiation. 0.5% of patients experienced a severe bradycardia below or equal to 40 bpm.
In the SIGNIFY study atrial fibrillation was observed in 5.3% of patients taking ivabradine compared to 3.8% in the placebo group. In a pooled analysis of all the Phase II/III double blind controlled clinical trials with a duration of at least 3 months including more than 40,000 patients, the incidence of atrial fibrillation was 4.86% in ivabradine treated patients compared to 4.08% in controls, corresponding to a hazard ratio of 1.26, 95% CI [1.15-1.39].
In the SHIFT trial more patients experienced episodes of increased blood pressure while treated with ivabradine (7.1%) compared to patients treated with placebo (6.1%). These episodes occurred most frequently shortly after blood pressure treatment was modified, were transient, and did not affect the treatment effect of ivabradine.
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the national reporting system listed in Appendix V.
Not applicable.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.