SIVEXTRO Powder for concentrate for solution for infusion Ref.[9877] Active ingredients: Tedizolid

Source: European Medicines Agency (EU)  Revision Year: 2020  Publisher: Merck Sharp & Dohme B.V., Waarderweg 39, 2031, BN Haarlem, The Netherlands

Pharmacodynamic properties

Pharmacotherapeutic group: Antibacterials for systemic use, other antibacterials
ATC code: J01XX11

Mechanism of action

Tedizolid phosphate is an oxazolidinone phosphate prodrug. The antibacterial activity of tedizolid is mediated by binding to the 50S subunit of the bacterial ribosome resulting in inhibition of protein synthesis.

Tedizolid is primarily active against Gram-positive bacteria.

Tedizolid is bacteriostatic against enterococci, staphylococci, and streptococci in vitro.

Resistance

The most commonly observed mutations in staphylococci and enterococci that result in oxazolidinone resistance are in one or more copies of the 23S rRNA genes (G2576U and T2500A). Organisms resistant to oxazolidinones via mutations in chromosomal genes encoding 23S rRNA or ribosomal proteins (L3 and L4) are generally cross-resistant to tedizolid.

A second resistance mechanism is encoded by a plasmid-borne and transposon associated chloramphenicol-florfenicol resistance (cfr) gene, conferring resistance in staphylococci and enterococci to oxazolidinones, phenicols, lincosamides, pleuromutilins, streptogramin A and 16-membered macrolides. Due to a hydroxymethyl group in the C5 position, tedizolid retains activity against strains of Staphylococcus aureus that express the cfr gene in the absence of chromosomal mutations.

The mechanism of action is different from that of non-oxazolidinone class antibacterial medicinal products; therefore, cross-resistance between tedizolid and other classes of antibacterial medicinal products is unlikely.

Antibacterial activity in combination with other antibacterial and antifungal agents

In vitro drug combination studies with tedizolid and amphotericin B, aztreonam, ceftazidime, ceftriaxone, ciprofloxacin, clindamycin, colistin, daptomycin, gentamicin, imipenem, ketoconazole, minocycline, piperacillin, rifampicin, terbinafine, trimethoprim/sulfamethoxazole, and vancomycin indicate that neither synergy nor antagonism have been demonstrated.

Susceptibility testing breakpoints

Minimum inhibitory concentration (MIC) breakpoints determined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) are:

OrganismsMinimum Inhibitory Concentrations (mg/L)
Susceptible (≤S) Resistant (R>)
Staphylococcus spp. 0.5 0.5
Beta haemolytic streptococci of Groups A,B,C,G 0.5 0.5
Viridans group streptococci (Streptococcus anginosus group only) 0.25 0.25

Pharmacokinetic/pharmacodynamic relationship

The AUC/MIC ratio was the pharmacodynamic parameter shown to best correlate with efficacy in mouse thigh and lung S. aureus infection models.

In a mouse thigh infection model of S. aureus, the antibacterial activity of tedizolid was reduced in the absence of granulocytes. The AUC/MIC ratio to achieve bacteriostasis in neutropenic mice was at least 16 times that in immunocompetent animals (see section 4.4).

Clinical efficacy against specific pathogens

Efficacy has been demonstrated in clinical studies against the pathogens listed under each indication that were susceptible to tedizolid in vitro.

Acute bacterial skin and skin structure infections

  • Staphylococcus aureus
  • Streptococcus pyogenes
  • Streptococcus agalactiae
  • Streptococcus anginosus group (including S. anginosus, S. intermedius and S. constellatus)

Antibacterial activity against other relevant pathogens

Clinical efficacy has not been established against the following pathogens although in vitro studies suggest that they would be susceptible to tedizolid in the absence of acquired mechanisms of resistance:

  • Staphylococcus lugdunensis

Paediatric population

The European Medicines Agency has deferred the obligation to submit the results of studies with Sivextro in one or more subsets of the paediatric population in the treatment of acute bacterial skin and skin structure infections (see section 4.2 for information on paediatric use).

Pharmacokinetic properties

Oral and intravenous tedizolid phosphate is a prodrug that is rapidly converted by phosphatases to tedizolid, the microbiologically active moiety. Only the pharmacokinetic profile of tedizolid is discussed in this section. Pharmacokinetic studies were conducted in healthy volunteers and population pharmacokinetic analyses were conducted in patients from Phase 3 studies.

Absorption

At steady state, tedizolid mean (SD) Cmax values of 2.2 (0.6) and 3.0 (0.7) mcg/mL and AUC values of 25.6 (8.5) and 29.2 (6.2) mcg·h/mL were similar with oral and IV administration of tedizolid phosphate, respectively. The absolute bioavailability of tedizolid is above 90%. Peak plasma tedizolid concentrations are achieved within approximately 3 hours after dosing after oral administration of tedizolid phosphate under fasted conditions.

Peak concentrations (Cmax) of tedizolid are reduced by approximately 26% and delayed by 6 hours when tedizolid phosphate is administered after a high-fat meal relative to fasted, while total exposure (AUC0-∞) is unchanged between fasted and fed conditions.

Distribution

The average binding of tedizolid to human plasma proteins is approximately 70-90%. The mean steady state volume of distribution of tedizolid in healthy adults (n=8) following a single intravenous dose of tedizolid phosphate 200 mg ranged from 67 to 80 L.

Biotransformation

Tedizolid phosphate is converted by endogenous plasma and tissue phosphatases to the microbiologically active moiety, tedizolid. Other than tedizolid, which accounts for approximately 95% of the total radiocarbon AUC in plasma, there are no other significant circulating metabolites. When incubated with pooled human liver microsomes, tedizolid was stable suggesting that tedizolid is not a substrate for hepatic CYP450 enzymes. Multiple sulfotransferase (SULT) enzymes (SULT1A1, SULT1A2, and SULT2A1) are involved in the biotransformation of tedizolid, to form an inactive and non-circulating sulphate conjugate found in the excreta.

Elimination

Tedizolid is eliminated in excreta, primarily as a non-circulating sulfate conjugate. Following single oral administration of 14C-labeled tedizolid phosphate under fasted conditions, the majority of elimination occurred via the liver with 81.5% of the radioactive dose recovered in faeces and 18% in urine, with most of the elimination (>85%) occurring within 96 hours. Less than 3% of tedizolid phosphate administered dose is excreted as active tedizolid. The elimination half-life of tedizolid is approximately 12 hours and the intravenous clearance is 6-7 L/h.

Linearity/non-linearity

Tedizolid demonstrated linear pharmacokinetics with regard to dose and time. The Cmax and AUC of tedizolid increased approximately dose proportionally within the single oral dose range of 200 mg to 1,200 mg and across the intravenous dose range of 100 mg to 400 mg. Steady-state concentrations are achieved within 3 days and indicate modest active substance accumulation of approximately 30% following multiple once-daily oral or intravenous administration as predicted by a half-life of approximately 12 hours.

Special populations

Renal impairment

Following administration of a single 200 mg IV dose of tedizolid phosphate to 8 subjects with severe renal impairment defined as eGFR <30 mL/min, the Cmax was basically unchanged and AUC0-∞ was changed by less than 10% compared to 8 matched healthy subject controls. Haemodialysis does not result in meaningful removal of tedizolid from systemic circulation, as assessed in subjects with endstage renal disease (eGFR <15 mL/min). The eGFR was calculated using the MDRD4 equation.

Hepatic impairment

Following administration of a single 200 mg oral dose of tedizolid phosphate, the pharmacokinetics of tedizolid are not altered in patients with moderate (n=8) or severe (n=8) hepatic impairment (Child-Pugh Class B and C).

Elderly population (≥65 years)

The pharmacokinetics of tedizolid in elderly healthy volunteers (age 65 years and older, with at least 5 subjects at least 75 years old; n=14) was comparable to younger control subjects (25 to 45 years old; n=14) following administration of a single oral dose of tedizolid phosphate 200 mg.

Paediatric population

The pharmacokinetics of tedizolid were evaluated in adolescents (12 to 17 years; n=20) following administration of a single oral or IV dose of tedizolid phosphate 200 mg and in adolescents (12 to <18 years; n=91) receiving tedizolid phosphate 200 mg IV or oral every 24 hours for 6 days. The estimated mean Cmax and AUC0-24h at steady state for tedizolid in adolescents were 3.37 µg/mL and 30.8 µg·h/mL which were similar to adults.

Gender

The impact of gender on the pharmacokinetics of tedizolid phosphate was evaluated in healthy males and females in clinical studies and in a population pharmacokinetics analysis. The pharmacokinetics of tedizolid were similar in males and females.

Drug interaction studies

Effects of other medicines on Sivextro

In vitro studies have shown that drug interactions between tedizolid and inhibitors or inducers of cytochrome P450 (CYP) isoenzymes are unanticipated.

Multiple sulfotransferase (SULT) isoforms (SULT1A1, SULT1A2, and SULT2A1) were identified in vitro that are capable of conjugating tedizolid which suggests that no single isozyme is critical to the clearance of tedizolid.

Effects of Sivextro on other medicines

Drug metabolizing enzymes:

In vitro studies in human liver microsomes indicate that tedizolid phosphate and tedizolid do not significantly inhibit metabolism mediated by any of the following CYP isoenzymes (CYP1A2, CYP2C19, CYP2A6, CYP2C8, CYP2C9, CYP2D6, and CYP3A4). Tedizolid did not alter activity of selected CYP isoenzymes, but induction of CYP3A4 mRNA was observed in vitro in hepatocytes.

A clinical study comparing the single dose (2 mg) pharmacokinetics of midazolam (CYP3A4 substrate) alone or in combination with tedizolid phosphate (once-daily 200 mg oral dose for 10 days), demonstrated no clinically meaningful difference in midazolam Cmax or AUC. No dose adjustment is necessary for co-administered CYP3A4 substrates during treatment with Sivextro.

Membrane transporters:

The potential for tedizolid or tedizolid phosphate to inhibit transport of probe substrates of important drug uptake (OAT1, OAT3, OATP1B1, OATP1B3, OCT1, and OCT2) and efflux transporters (P-gp and BCRP) was tested in vitro. No clinically relevant interactions are expected to occur with these transporters, with the exception of BCRP.

In a clinical study comparing the single dose (10 mg) pharmacokinetics of rosuvastatin (BCRP substrate) alone or in combination with the oral administration of tedizolid phosphate 200 mg, rosuvastatin AUC and Cmax increased by approximately 70% and 55%, respectively, when coadministered with Sivextro. Therefore, orally administered Sivextro can result in inhibition of BCRP at the intestinal level.

Monoamine oxidase inhibition:

Tedizolid is a reversible inhibitor of MAO in vitro; however, no interaction is anticipated when comparing the IC50 and the anticipated plasma exposures in man. No evidence of MAO-A inhibition was observed in Phase 1 studies specifically designed to investigate the potential for this interaction.

Adrenergic agents:

Two placebo-controlled crossover studies were conducted to assess the potential of 200 mg oral tedizolid phosphate at steady state to enhance pressor responses to pseudoephedrine and tyramine in healthy individuals. No meaningful changes in blood pressure or heart rate were seen with pseudoephedrine. The median tyramine dose required to cause an increase in systolic blood pressure of ≥30 mmHg from pre-dose baseline was 325 mg with tedizolid phosphate compared to 425 mg with placebo. Administration of Sivextro with tyramine-rich foods (i.e., containing tyramine levels of approximately 100 mg) would not be expected to elicit a pressor response.

Serotonergic agents:

Serotonergic effects at doses of tedizolid phosphate up to 30-fold above the human equivalent dose did not differ from vehicle control in a mouse model that predicts brain serotonergic activity. There are limited data in patients on the interaction between serotonergic agents and tedizolid phosphate. In Phase 3 studies, subjects taking serotonergic agents including antidepressants such as selective serotonin reuptake inhibitors (SSRIs), tricyclic antidepressants, and serotonin 5-hydroxytryptamine (5-HT1) receptor agonists (triptans), meperidine, or buspirone were excluded.

Preclinical safety data

Long-term carcinogenicity studies have not been conducted with tedizolid phosphate.

Repeated oral and intravenous dosing of tedizolid phosphate in rats in 1-month and 3-month toxicology studies produced dose- and time-dependent bone marrow hypocellularity (myeloid, erythroid, and megakaryocyte), with associated reduction in circulating RBCs, WBCs, and platelets. These effects showed evidence of reversibility and occurred at plasma tedizolid exposure levels (AUC) ≥6-fold greater than the plasma exposure associated with the human therapeutic dose. In a 1-month immunotoxicology study in rats, repeated oral dosing of tedizolid phosphate was shown to significantly reduce splenic B cells and T cells and reduce plasma IgG titers. These effects occurred at plasma tedizolid exposure levels (AUC) ≥3-fold greater than the expected human plasma exposure associated with the therapeutic dose.

A special neuropathology study was conducted in pigmented Long Evans rats administered tedizolid phosphate daily for up to 9 months. This study used sensitive morphologic evaluation of perfusion-fixed peripheral and central nervous system tissue. No evidence of neurotoxicity, including neurobehavioral changes or optic or peripheral neuropathy, was associated with tedizolid after 1, 3, 6 or 9 months of oral administration up to doses with plasma exposure levels (AUC) up to 8-fold greater than the expected human plasma exposure at the oral therapeutic dose.

Tedizolid phosphate was negative for genotoxicity in all in vitro assays (bacterial reverse mutation [Ames], Chinese hamster lung [CHL] cell chromosomal aberration) and in all in vivo tests (mouse bone marrow micronucleus, rat liver unscheduled DNA synthesis). Tedizolid, generated from tedizolid phosphate after metabolic activation (in vitro and in vivo), was also tested for genotoxicity. Tedizolid was positive in an in vitro CHL cell chromosomal aberration assay, but negative for genotoxicity in other in vitro assays (Ames, mouse lymphoma mutagenicity) and in vivo in a mouse bone marrow micronucleus assay.

Tedizolid phosphate had no adverse effects on the fertility or reproductive performance of male rats, including spermatogenesis, at oral doses up to the maximum tested dose of 50 mg/kg/day, or adult female rats at oral doses up to the maximum tested dose of 15 mg/kg/day. These dose levels equate to exposure margins of ≥5.3-fold for males and ≥4.2-fold for females relative to tedizolid plasma AUC0-24 levels at the human oral therapeutic dose.

Embryo-foetal development studies in mice and rats showed no evidence of a teratogenic effect at exposure levels 4-fold and 6-fold, respectively, those expected in humans. In embryo-foetal studies, tedizolid phosphate was shown to produce foetal developmental toxicities in mice and rats. Foetal developmental effects occurring in mice in the absence of maternal toxicity included reduced foetal weights and an increased incidence of costal cartilage fusion (an exacerbation of the normal genetic predisposition to sternal variations in the CD-1 strain of mice) at the high dose of 25 mg/kg/day (4-fold the estimated human exposure level based on AUCs). In rats, decreased foetal weights and increased skeletal variations including reduced ossification of the sternabrae, vertebrae, and skull were observed at the high dose of 15 mg/kg/day (6-fold the estimated human exposure based on AUCs) and were associated with maternal toxicity (reduced maternal body weights). The no observed adverse effect levels (NOAELs) for foetal toxicity in mice (5 mg/kg/day) as well as maternal and foetal toxicity in rats (2.5 mg/kg/day) were associated with tedizolid plasma area under the curve (AUC) values approximately equivalent to the tedizolid AUC value associated with the oral human therapeutic dose.

Tedizolid is excreted into the milk of lactating rats and the concentrations observed were similar to those in maternal plasma.

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.