TRAMADOL HYDROCHLORIDE HAMELN PHARMA Solution for injection or infusion Ref.[7127] Active ingredients: Tramadol

Source: Medicines & Healthcare Products Regulatory Agency (GB)  Revision Year: 2021  Publisher: hameln pharma ltd, Nexus, Gloucester Business Park, Gloucester, GL3 4AG, UK

Pharmacodynamic properties

Analgesic
ATC code: N02AX02

Tramadol is a centrally acting analgesic which possesses opioid agonist properties. Tramadol consists of two enantiomers, the ( + )-isomer is predominantly active as an opioid with preferential activity for the μ-receptor. The ( - )-isomer potentiates the analgesic effect of the ( + )-isomer and is active as an inhibitor of noradrenaline and serotonin uptake thereby modifying the transmission of pain impulses.

Tramadol also has an antitussive action. At the recommended dosages, the effects of tramadol given orally on the respiratory and cardiovascular systems appear to be clinically insignificant. The potency of tramadol is reported to be 1/10th to 1/6th that of morphine.

Paediatric population

Effects of enteral and parenteral administration of tramadol have been investigated in clinical trials involving more than 2000 paediatric patients ranging in age from neonate to 17 years of age. The indications for pain treatment studied in those trials included pain after surgery (mainly abdominal), after surgical tooth extractions, due to fractures, burns and traumas as well as other painful conditions likely to require analgesic treatment for at least 7 days.

At single doses of up to 2 mg/kg or multiple doses of up to 8 mg/kg per day (to a maximum of 400 mg per day) efficacy of tramadol was found to be superior to placebo, and superior or equal to paracetamol, nalbuphine, pethidine or low dose morphine. The conducted trials confirmed the efficacy of tramadol. The safety profile of tramadol was similar in adult and paediatric patients older than 1 year (see section 4.2).

Pharmacokinetic properties

a) General

The mean absolute bioavailability after intramuscular administration was found to be 100%.

The distribution of tramadol following intravenous administration is rapid and in two phases with different half-lives of 0.31 ± 0.17 hours (initial rapid phase) and 1.7 ± 0.4 hours (slower phase) respectively.

After intravenous administration of 100 mg tramadol, the serum concentration was 613 ± 221 ng/ml at 15 minutes post dosing and 409 ± 79 ng/ml at 2 hours post dosing. Tramadol has a high tissue affinity with an apparent volume of distribution of 203 L after intravenous dosing in healthy volunteers.

Tramadol undergoes hepatic metabolism with approximately 85% of an intravenous dose being metabolised in young healthy volunteers. In humans tramadol is mainly metabolised by means of N- and O-demethylation and conjugation of the O-demethylation products with glucuronic acid. Only O desmethyltramadol is pharmacologically active. There are considerable interindividual quantitative differences between the other metabolites. So far, eleven metabolites have been found in the urine. Animal experiments have shown that O-desmthyltramadol is more potent than the parent substance by the factor 2-4. Its half life t½β (6 healthy volunteers) is 7.9 h (range 5.4-9.6 h) and is approximately that of tramadol.

The inhibition of one or both cytochrome P450 isoenzymes, CYP3A4 and CYP2D6 involved in the metabolism of tramadol, may affect the plasma concentration of tramadol or its active metabolite.

Tramadol is essentially excreted via the kidneys. The mean elimination half-life of tramadol following intravenous administration is 5-6 hours. Total clearance of tramadol was 28.0 L/h following intravenous administration.

b) Characteristics in patients

Effect of age

Tramadol pharmacokinetics show little age-dependence in volunteers up to the age of 75 years. In volunteers aged over 75 years, the terminal elimination half-life was 7.0 ± 1.6 h compared to 6.0 ± 1.5 h in young volunteers after oral administration. Effect of hepatic or renal impairment: As both tramadol and its pharmacologically active metabolite, O-desmethyl tramadol, are eliminated both metabolically and renally, the terminal half-life of elimination (t½) may be prolonged in patients with hepatic or renal dysfunction. However, the increase in t½ is relatively small if either excretory organ is functioning normally. In liver cirrhosis patients, the mean t½ of tramadol was 13.3 ± 4.9 hours. In patients with renal failure (creatinine clearance <5 mL/min) the t½ of tramadol was 11.0 ± 3.2 hours and that of M1 was 16.9 ± 3.0 hours. Extreme values observed to date are 22.3 hours (tramadol) and 36.0 hours (M1) in liver cirrhosis patients and 19.5 hours (tramadol) and 43.2 hours (M1) in renal failure patients.

Paediatric population

The pharmacokinetics of tramadol and O-desmethyltramadol after single-dose and multiple-dose oral administration to subjects aged 1 year to 16 years were found to be generally similar to those in adults when adjusting for dose by body weight, but with a higher between-subject variability in children aged 8 years and below.

In children below 1 year of age, the pharmacokinetics of tramadol and O-desmethyltramadol have been investigated, but have not been fully characterized. Information from studies including this age group indicates that the formation rate of O-desmethyltramadol via CYP2D6 increases continuously in neonates, and adult levels of CYP2D6 activity are assumed to be reached at about 1 year of age. In addition, immature glucuronidation systems and immature renal function may result in slow elimination and accumulation of O-desmethyltramadol in children under 1 year of age.

Preclinical safety data

On repeated oral and parenteral administration of tramadol for 6 – 26 weeks in rats and dogs and oral administration for 12 months in dogs, haematological, clinico-chemical and histological investigations showed no evidence of any substance-related changes. Central nervous manifestations only occurred after high doses considerably above the therapeutic range: restlessness, salivation, convulsions, and reduced weight gain. Rats and dogs tolerated oral doses of 20 mg/kg and 10 mg/kg body weight respectively, and dogs rectal doses of 20 mg/kg body weight without any reactions.

In rats tramadol dosages from 50 mg/kg/day upwards caused toxic effects in dams and raised neonate mortality. In the offspring retardation occurred in the form of ossification disorders and delayed vaginal and eye opening. Male fertility was not affected. After higher doses (from 50 mg/kg/day upwards) females exhibited a reduced pregnancy rate. In rabbits there were toxic effects in dams from 125 mg/kg upwards and skeletal anomalies in the offspring.

In some in-vitro test systems there was evidence of mutagenic effects. In-vivo studies showed no such effects. According to knowledge gained so far, tramadol can be classified as non-mutagenic.

Studies on the tumorigenic potential of tramadol hydrochloride have been carried out in rats and mice. The study in rats showed no evidence of any substance-related increase in the incidence of tumours. In the study in mice there was an increased incidence of liver cell adenomas in male animals (a dose-dependent, non-significant increase from 15 mg/kg upwards) and an increase in pulmonary tumours in females of all dosage groups (significant, but not dose-dependent).

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.