Afatinib

Chemical formula: C₂₄H₂₅ClFN₅O₃  Molecular mass: 485.938 g/mol  PubChem compound: 10184653

Mechanism of action

Afatinib is a potent and selective, irreversible ErbB Family Blocker. Afatinib covalently binds to and irreversibly blocks signalling from all homo- and heterodimers formed by the ErbB family members EGFR (ErbB1), HER2 (ErbB2), ErbB3 and ErbB4.

Pharmacodynamic properties

Pharmacodynamic effects

Aberrant ErbB signalling triggered by receptor mutations, and/or amplification, and/or receptor ligand overexpression contributes to the malignant phenotype. Mutation in EGFR defines a distinct molecular subtype of lung cancer.

In non-clinical disease models with ErbB pathway deregulation, afatinib as a single agent effectively blocks ErbB receptor signalling resulting in tumour growth inhibition or tumour regression. NSCLC tumours with common activating EGFR mutations (Del 19, L858R) and several less common EGFR mutations in exon 18 (G719X) and exon 21 (L861Q) are particularly sensitive to afatinib treatment in non-clinical and clinical settings. Limited non-clinical and/or clinical activity was observed in NSCLC tumours with insertion mutations in exon 20.

The acquisition of a secondary T790M mutation is a major mechanism of acquired resistance to afatinib and gene dosage of the T790M-containing allele correlates with the degree of resistance in vitro. The T790M mutation is found in approximately 50% of patients' tumours upon disease progression on afatinib, for which T790M targeted EGFR TKIs may be considered as a next line treatment option. Other potential mechanisms of resistance to afatinib have been suggested preclinically and MET gene amplification has been observed clinically.

Pharmacokinetic properties

Absorption

Following oral administration of afatinib, Cmax of afatinib were observed approximately 2 to 5 hours post dose. Cmax and AUC0-∞ values increased slightly more than proportionally in the dose range from 20 mg to 50 mg afatinib. Systemic exposure to afatinib is decreased by 50% (Cmax) and 39% (AUC0-∞, when administered with a high-fat meal compared to administration in the fasted state. Based on population pharmacokinetic data derived from clinical trials in various tumour types, an average decrease of 26% in AUCτ,ss was observed when food was consumed within 3 hours before or 1 hour after taking afatinib. Therefore, food should not be consumed for at least 3 hours before and at least 1 hour after taking afatinib.

Distribution

In vitro binding of afatinib to human plasma proteins is approximately 95%. Afatinib binds to proteins both non-covalently (traditional protein binding) and covalently.

Biotransformation

Enzyme-catalyzed metabolic reactions play a negligible role for afatinib in vivo. Covalent adducts to proteins were the major circulating metabolites of afatinib.

Elimination

In humans, excretion of afatinib is primarily via the faeces. Following administration of an oral solution of 15 mg afatinib, 85.4% of the dose was recovered in the faeces and 4.3% in urine. The parent compound afatinib accounted for 88% of the recovered dose. Afatinib is eliminated with an effective half-life of approximately 37 hours. Thus, steady state plasma concentrations of afatinib were achieved within 8 days of multiple dosing of afatinib resulting in an accumulation of 2.77-fold (AUC0-∞) and 2.11-fold (Cmax). In patients treated with afatinib for more than 6 months a terminal half-life of 344 h was estimated.

Special populations

Renal impairment

Less than 5% of a single dose of afatinib is excreted via the kidneys. Exposure to afatinib in subjects with renal impairment was compared to healthy volunteers following a single dose of 40 mg afatinib. Subjects with moderate renal impairment (n=8; eGFR 30-59 mL/min/1.73m², according to the Modification of Diet in Renal Disease [MDRD] formula) had an exposure of 101% (Cmax) and 122% (AUC0-tz) in comparison to their healthy controls. Subjects with severe renal impairment (n=8; eGFR 15-29 mL/min/1.73m², according to the 20 MDRD formula) had an exposure of 122% (Cmax) and 150% (AUC0-tz) in comparison to their healthy controls. Based on this trial and population pharmacokinetic analysis of data derived from clinical trials in various tumour types, it is concluded, that adjustments to the starting dose in patients with mild (eGFR 60-89 mL/min/1.73m²), moderate (eGFR 30-59 mL/min/1.73m²), or severe (eGFR 15-29 mL/min/1.73m²) renal impairment are not necessary, but patients with severe impairment should be monitored. Afatinib has not been studied in patients with eGFR <15 mL/min/1.73m² or on dialysis.

Hepatic impairment

Afatinib is eliminated mainly by biliary/faecal excretion. Subjects with mild (Child Pugh A) or moderate (Child Pugh B) hepatic impairment had similar exposure in comparison to healthy volunteers following a single dose of 50 mg afatinib. This is consistent with population pharmacokinetic data derived from clinical trials in various tumour types (see “Population pharmacokinetic analysis in special populations” below). No starting dose adjustments appear necessary in patients with mild or moderate hepatic impairment. The pharmacokinetics of afatinib have not been studied in subjects with severe (Child Pugh C) hepatic dysfunction.

Population pharmacokinetic analysis in special populations

A population pharmacokinetic analysis was performed in 927 cancer patients (764 with NSCLC) receiving afatinib monotherapy. No starting dose adjustment was considered necessary for any of the following covariates tested.

Age

No significant impact of age (range: 28 years-87 years) on the pharmacokinetics of afatinib could be observed.

Body weight

Plasma exposure (AUCτ,ss) was increased by 26% for a 42 kg patient (2.5th percentile) and decreased by 22% for a 95 kg patient (97.5th percentile) relative to a patient weighing 62 kg (median body weight of patients in the overall patient population).

Gender

Female patients had a 15% higher plasma exposure (AUCτ,ss, body weight corrected) than male patients.

Race

Race had no effect on the pharmacokinetics of afatinib based on a population pharmacokinetic analysis, including patients of Asian, White, and Black racial groups. Data on Black racial groups was limited.

Renal impairment

Exposure to afatinib moderately increased with lowering of the creatinine clearance (CrCL, calculated according to Cockcroft Gault), i.e. for a patient with a CrCL of 60 mL/min or 30 mL/min exposure (AUCτ,ss) to afatinib increased by 13% and 42%, respectively, and decreased by 6% and 20% for a patient with CrCL of 90 mL/min or 120 mL/min, respectively, compared to a patient with the CrCL of 79 mL/min (median CrCL of patients in the overall patient population analysed).

Hepatic impairment

Patients with mild and moderate hepatic impairment as identified by abnormal liver tests did not correlate with any significant change in afatinib exposure. There was limited data available for moderate and severe hepatic impairment.

Other patient characteristics / intrinsic factors

Other patient characteristics/intrinsic factors found with a significant impact on afatinib exposure were: ECOG performance score, lactate dehydrogenase levels, alkaline phosphatase levels and total protein. The individual effect sizes of these covariates were considered not clinically relevant. Smoking history, alcohol consumption (limited data), or presence of liver metastases had no significant impact on the pharmacokinetics of afatinib.

Other information on drug-drug interactions

Interactions with drug uptake transport systems

In vitro data indicated that drug-drug interactions with afatinib due to inhibition of OATB1B1, OATP1B3, OATP2B1, OAT1, OAT3, OCT1, OCT2, and OCT3 transporters are considered unlikely.

Interactions with Cytochrome P450 (CYP) enzymes

In humans it was found that enzyme-catalyzed metabolic reactions play a negligible role for the metabolism of afatinib. Approximately 2% of the afatinib dose was metabolized by FMO3 and the CYP3A4-dependent N-demethylation was too low to be quantitatively detected. Afatinib is not an inhibitor or an inducer of CYP enzymes. Therefore, this medicinal product is unlikely to interact with other medicines that modulate or are metabolised by CYP enzymes.

Effect of UDP-glucuronosyltransferase 1A1 (UGT1A1) inhibition on afatinib

In vitro data indicated that drug-drug interactions with afatinib due to inhibition of UGT1A1 are considered unlikely.

Preclinical safety data

Oral administration of single doses to mice and rats indicated a low acute toxic potential of afatinib. In oral repeated-dose studies for up to 26 weeks in rats or 52 weeks in minipigs the main effects were identified in the skin (dermal changes, epithelial atrophy and folliculitis in rats), the gastrointestinal tract (diarrhoea, erosions in the stomach, epithelial atrophy in rats and minipigs) and the kidneys (papillary necrosis in rats). Depending on the finding, these changes occurred at exposures below, in the range of or above clinically relevant levels. Additionally, in various organs pharmacodynamically mediated atrophy of epithelia was observed in both species.

Reproduction toxicity

Based on the mechanism of action, all EGFR targeting medicinal products including afatinib have the potential to cause foetal harm. The embryo-foetal development studies performed on afatinib revealed no indication of teratogenicity. The respective total systemic exposure (AUC) was either slightly above (2.2 times in rats) or below (0.3 times in rabbits) compared with levels in patients.

Radiolabelled afatinib administered orally to rats on Day 11 of lactation was excreted in the breast milk of the dams.

A fertility study in male and female rats up to the maximum tolerated dose revealed no significant impact on fertility. The total systemic exposure (AUC0-24) in male and female rats was in the range or less than that observed in patients (1.3 times and 0.51 times, respectively). A study in rats up to the maximum tolerated doses revealed no significant impact on pre-/postnatal development. The highest total systemic exposure (AUC0-24) in female rats was less than that observed in patients (0.23 times).

Phototoxicity

An in vitro 3T3 test showed that afatinib may have phototoxicity potential.

Carcinogenicity

Carcinogenicity studies have not been conducted with afatinib.

Related medicines

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.