Ceftaroline fosamil

Chemical formula: C₂₂H₂₁N₈O₈PS₄  Molecular mass: 684.67 g/mol  PubChem compound: 9852981

Mechanism of action

In vitro studies have shown that ceftaroline is bactericidal and able to inhibit bacterial cell wall synthesis in methicillin-resistant Staphylococcus aureus (MRSA) and penicillin non-susceptible Streptococcus pneumoniae (PNSP) due to its affinity for the altered penicillin-binding proteins (PBPs) found in these organisms. As a result, minimum inhibitory concentrations (MICs) of ceftaroline against a proportion of these organisms tested fall into the susceptible range.

Pharmacodynamic properties

Resistance

Ceftaroline is not active against strains of Enterobacteriaceae producing extended-spectrum beta- lactamases (ESBLs) from the TEM, SHV or CTX-M families, serine carbapenemases (such as KPC), class B metallo-beta-lactamases or class C (AmpC) cephalosporinases. Organisms that express these enzymes and which are therefore resistant to ceftaroline occur at very variable rates between countries and between healthcare facilities within countries. If ceftaroline is commenced before susceptibility test results are available then local information on the risk of encountering organisms that express these enzymes should be taken into consideration. Resistance may also be mediated by bacterial impermeability or drug efflux pump mechanisms. One or more of these mechanisms may co-exist in a single bacterial isolate.

Interaction with other antibacterial agents

In vitro studies have not demonstrated any antagonism between ceftaroline in combination with other commonly used antibacterial agents (e.g. amikacin, azithromycin, aztreonam, daptomycin, levofloxacin, linezolid, meropenem, tigecycline, and vancomycin).

Pharmacokinetic/pharmacodynamic relationship

As with other beta-lactam antimicrobial agents, the percent time above the minimum inhibitory concentration (MIC) of the infecting organism over the dosing interval (%T>MIC) has been shown to be the parameter that best correlates with the efficacy of ceftaroline.

Pharmacokinetic properties

The Cmax and AUC of ceftaroline increase approximately in proportion to dose within the single dose range of 50 to 1000 mg. No appreciable accumulation of ceftaroline is observed following multiple intravenous infusions of 600 mg every 8 or 12 hours in healthy adults with CrCL >50 mL/min.

Distribution

The plasma protein binding of ceftaroline is low (approximately 20%) and ceftaroline is not distributed into erythrocytes. The median steady-state volume of distribution of ceftaroline in healthy adult males following a single 600 mg intravenous dose of radiolabelled ceftaroline fosamil was 20.3 l, similar to the volume of extracellular fluid.

Biotransformation

Ceftaroline fosamil (prodrug) is converted into the active ceftaroline in plasma by phosphatase enzymes and concentrations of the prodrug are measurable in plasma primarily during intravenous infusion. Hydrolysis of the beta-lactam ring of ceftaroline occurs to form the microbiologically inactive, open-ring metabolite, ceftaroline M-1. The mean plasma ceftaroline M-1 to ceftaroline AUC ratio following a single 600 mg intravenous infusion of ceftaroline fosamil in healthy subjects is approximately 20-30%.

In pooled human liver microsomes, metabolic turnover was low for ceftaroline, indicating that ceftaroline is not metabolised by hepatic CYP450 enzymes.

Elimination

Ceftaroline is primarily eliminated by the kidneys. Renal clearance of ceftaroline is approximately equal, or slightly lower than the glomerular filtration rate in the kidney, and in vitro transporter studies indicate that active secretion does not contribute to the renal elimination of ceftaroline.

The mean terminal elimination half-life of ceftaroline in healthy adults is approximately 2.5 hours.

Following the administration of a single 600 mg intravenous dose of radiolabelled ceftaroline fosamil to healthy male adults, approximately 88% of radioactivity was recovered in urine and 6% in faeces.

Special populations

Renal impairment

Dosage adjustments are required in adults, adolescents and children with CrCL ≤50 mL/min.

There is insufficient information to recommend dosage adjustments in adolescents with ESRD aged from 12 to <18 years and with bodyweight <33 kg and in children with ESRD aged from 2 to <12 years. There is insufficient information to recommend dosage adjustments in children aged <2 years with moderate or severe renal impairment or ESRD.

Hepatic impairment

The pharmacokinetics of ceftaroline in patients with hepatic impairment has not been established. As ceftaroline does not appear to undergo significant hepatic metabolism, the systemic clearance of ceftaroline is not expected to be significantly affected by hepatic impairment. Therefore, no dosage adjustment is recommended for patients with hepatic impairment.

Elderly

Following administration of a single 600 mg intravenous dose of ceftaroline fosamil, the pharmacokinetics of ceftaroline were similar between healthy elderly subjects (≥65 years of age), and healthy young adult subjects (18-45 years of age). There was a 33% increase in AUC0-∞ in the elderly that was mainly attributable to age-related changes in renal function. Ceftaroline fosamil dose adjustment is not required in elderly patients with creatinine clearance above 50 mL/min.

Paediatric population

Dose adjustments are required for children aged from 2 months to <12 years and for adolescents aged 12 to <18 years with bodyweight <33 kg. The safety and efficacy of ceftaroline fosamil in children aged birth to <2 months have not been established.

Preclinical safety data

The kidney was the primary target organ of toxicity in both the monkey and rat. Histopathologic findings included pigment deposition and inflammation of the tubular epithelium. Renal changes were not reversible but were reduced in severity following a 4 week recovery period.

Convulsions have been observed at relatively high exposures during single and multi-dose studies in both the rat and monkey (≥7 times to the estimated ceftaroline Cmax level of a 600 mg twice a day).

Other important toxicologic findings noted in the rat and monkey included histopathologic changes in the bladder and spleen.

Genetic toxicology

Ceftaroline fosamil and ceftaroline were clastogenic in an in vitro chromosomal aberration assay, however there was no evidence of mutagenic activity in an Ames test, mouse lymphoma and unscheduled DNA synthesis assay. Furthermore, in vivo micronucleus assays in rat and mouse were negative. Carcinogenicity studies have not been conducted.

Reproductive toxicology

Overall, no adverse effects on fertility or post-natal development were observed in the rat at up to 5 times the observed clinical exposure. When ceftaroline was administered during organogenesis, minor changes in foetal weight and delayed ossification of the interparietal bone were observed in the rat at exposures below that observed clinically. However, when ceftaroline was administered throughout pregnancy and lactation, there was no effect on pup weight or growth. Ceftaroline administration to pregnant rabbits resulted in an increased foetal incidence of angulated hyoid alae, a common skeletal variation in rabbit fetuses, at exposures similar to those observed clinically.

Juvenile toxicity

Intravenous bolus dosing of ceftaroline fosamil to suckling rats from post-natal day 7 to 20 was well tolerated at plasma exposures approximately 2-fold higher than those for paediatric patients. Renal cortical cysts were oberved in all groups, including controls, on PND50. The cysts involved a small portion of the kidney and ocurred in the absence of significant changes in either renal function or urinary parameters. Therefore, these findings were not considered to be adverse.

Related medicines

© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.