Chemical formula: C₃₈H₆₉NO₁₃ Molecular mass: 747.953 g/mol PubChem compound: 84029
Clarithromycin interacts in the following cases:
Drugs that are inducers of CYP3A (e.g. rifampicin, phenytoin, carbamazepine, phenobarbital, St John’s wort) may induce the metabolism of clarithromycin. This may result in sub-therapeutic levels of clarithromycin leading to reduced efficacy. Furthermore, it might be necessary to monitor the plasma levels of the CYP3A inducer, which could be increased owing to the inhibition of CYP3A by clarithromycin.
Co-administration of clarithromycin, known to inhibit CYP3A, and a drug primarily metabolised by CYP3A may be associated with elevations in drug concentrations that could increase or prolong both therapeutic and adverse effects of the concomitant drug. Clarithromycin should be used with caution in patients receiving treatment with other drugs known to be CYP3A enzyme substrates, especially if the CYP3A substrate has a narrow safety margin (e.g. carbamazepine) and/or the substrate is extensively metabolised by this enzyme.
Dosage adjustments may be considered, and when possible, serum concentrations of drugs primarily metabolised by CYP3A should be monitored closely in patients concurrently receiving clarithromycin.
The following drugs or drug classes are known or suspected to be metabolised by the same CYP3A isozyme: alprazolam, astemizole, carbamazepine, cilostazol, cisapride, ciclosporin, disopyramide, ergot alkaloids, lovastatin, methylprednisolone, midazolam, omeprazole, oral anticoagulants (e.g. warfarin), atypical antipsychotics (e.g. quetiapine), pimozide, quinidine, rifabutin, sildenafil, simvastatin, sirolimus, tacrolimus, terfenadine, triazolam and vinblastine but this list is not exhaustive. Drugs interacting by similar mechanisms through other isozymes within the cytochrome P450 system include phenytoin, theophylline and valproate.
In patients with renal impairment who have creatinine clearance less than 30 ml/min, the dosage of clarithromycin should be reduced to one half of the normal recommended dose.
The concomitant use of clarithromycin and oral hypoglycaemic agents (such as sulphonylurias) and/or insulin can result in significant hypoglycaemia. Careful monitoring of glucose is recommended.
There is a risk of serious haemorrhage and significant elevations in International Normalized Ratio (INR) and prothrombin time when clarithromycin is co-administered with warfarin. INR and prothrombin times should be frequently monitored while patients are receiving clarithromycin and oral anticoagulants concurrently.
Concomitant use of clarithromycin with lovastatin or simvastatin is contraindicated as these statins are extensively metabolized by CYP3A4 and concomitant treatment with clarithromycin increases their plasma concentration, which increases the risk of myopathy, including rhabdomyolysis. Reports of rhabdomyolysis have been received for patients taking clarithromycin concomitantly with these statins. If treatment with clarithromycin cannot be avoided, therapy with lovastatin or simvastatin must be suspended during the course of treatment.
Caution should be exercised when prescribing clarithromycin with statins. In situations where the concomitant use of clarithromycin with statins cannot be avoided, it is recommended to prescribe the lowest registered dose of the statin. Use of a statin that is not dependent on CYP3A metabolism (e.g. fluvastatin) can be considered. Patients should be monitored for signs and symptoms of myopathy.
When midazolam was co-administered with clarithromycin tablets (500 mg twice daily), midazolam AUC was increased 2.7-fold after intravenous administration of midazolam. If intravenous midazolam is co-administered with clarithromycin, the patient must be closely monitored to allow dose adjustment. Drug delivery of midazolam via oromucosal route, which could bypass pre-systemic elimination of the drug, will likely result in a similar interaction to that observed after intravenous midazolam rather than oral administration. The same precautions should also apply to other benzodiazepines that are metabolised by CYP3A, including triazolam and alprazolam. For benzodiazepines which are not dependent on CYP3A for their elimination (temazepam, nitrazepam, lorazepam), a clinically important interaction with clarithromycin is unlikely.
There have been post-marketing reports of drug interactions and central nervous system (CNS) effects (e.g. somnolence and confusion) with the concomitant use of clarithromycin and triazolam. Monitoring the patient for increased CNS pharmacological effects is suggested.
Both clarithromycin and atazanavir are substrates and inhibitors of CYP3A, and there is evidence of a bi-directional drug interaction. Co-administration of clarithromycin (500 mg twice daily) with atazanavir (400 mg once daily) resulted in a 2-fold increase in exposure to clarithromycin and a 70% decrease in exposure to 14-OH-clarithromycin, with a 28% increase in the AUC of atazanavir. Because of the large therapeutic window for clarithromycin, no dosage reduction should be necessary in patients with normal renal function. For patients with moderate renal function (creatinine clearance 30 to 60 ml/min), the dose of clarithromycin should be decreased by 50%. For patients with creatinine clearance <30 ml/min, the dose of clarithromycin should be decreased by 75% using an appropriate clarithromycin formulation. Doses of clarithromycin greater than 1000 mg per day should not be co-administered with protease inhibitors.
Digoxin is thought to be a substrate for the efflux transporter, P-glycoprotein (Pgp). Clarithromycin is known to inhibit Pgp. When clarithromycin and digoxin are administered together, inhibition of Pgp by clarithromycin may lead to increased exposure to digoxin. Elevated digoxin serum concentrations in patients receiving clarithromycin and digoxin concomitantly have also been reported in post marketing surveillance. Some patients have shown clinical signs consistent with digoxin toxicity, including potentially fatal arrhythmias. Serum digoxin concentrations should be carefully monitored while patients are receiving digoxin and clarithromycin simultaneously.
Strong inducers of the cytochrome P450 metabolism system such as efavirenz, nevirapine, rifampicin, rifabutin, and rifapentine may accelerate the metabolism of clarithromycin and thus lower the plasma levels of clarithromycin, while increasing those of 14-OH-clarithromycin, a metabolite that is also microbiologically active. Since the microbiological activities of clarithromycin and 14-OH-clarithromycin are different for different bacteria, the intended therapeutic effect could be impaired during concomitant administration of clarithromycin and enzyme inducers.
Clarithromycin exposure was decreased by etravirine; however, concentrations of the active metabolite, 14-OH-clarithromycin, were increased. Because 14-OH-clarithromycin has reduced activity against Mycobacterium avium complex (MAC), overall activity against this pathogen may be altered; therefore, alternatives to clarithromycin should be considered for the treatment of MAC.
Concomitant administration of fluconazole 200 mg daily and clarithromycin 500 mg twice daily to 21 healthy volunteers led to increases in the mean steady-state minimum clarithromycin concentration (Cmin) and area under the curve (AUC) of 33% and 18% respectively. Steady state concentrations of the active metabolite 14-OH-clarithromycin were not significantly affected by concomitant administration of fluconazole. No clarithromycin dose adjustment is necessary.
Both clarithromycin and itraconazole are substrates and inhibitors of CYP3A, leading to a bidirectional drug interaction. Clarithromycin may increase the plasma levels of itraconazole, while itraconazole may increase the plasma levels of clarithromycin. Patients taking itraconazole and clarithromycin concomitantly should be monitored closely for signs or symptoms of increased or prolonged pharmacologic effect.
When midazolam was co-administered with clarithromycin tablets (500 mg twice daily), midazolam AUC was increased 7-fold after oral administration of midazolam. Concomitant administration of oral midazolam and clarithromycin is contraindicated.
With certain hypoglycemic drugs such as nateglinide, and repaglinide, inhibition of CYP3A enzyme by clarithromycin may be involved and could cause hypolgycemia when used concomitantly. Careful monitoring of glucose is recommended.
Clarithromycin (500 mg every 8 hours) was given in combination with omeprazole (40 mg daily) to healthy adult subjects. The steady-state plasma concentrations of omeprazole were increased (Cmax, AUC0-24, and t1/2 increased by 30%, 89%, and 34%, respectively), by the concomitant administration of clarithromycin. The mean 24-hour gastric pH value was 5.2 when omeprazole was administered alone and 5.7 when omeprazole was co-administered with clarithromycin.
There have been spontaneous or published reports of interactions of CYP3A inhibitors, including clarithromycin with drugs not thought to be metabolised by CYP3A (e.g. phenytoin and valproate). Serum level determinations are recommended for these drugs when administered concomitantly with clarithromycin. Increased serum levels have been reported.
There have been post-marketed reports of torsades de pointes occurring with the concurrent use of clarithromycin and quinidine or disopyramide. Electrocardiograms should be monitored for QT prolongation during co-administration of clarithromycin with these drugs. Serum levels of quinidine and disopyramide should be monitored during clarithromycin therapy.
There have been post marketing reports of hypoglycemia with the concomitant administration of clarithromycin and disopyramide. Therefore, blood glucose levels should be monitored during concomitant administration of clarithromycin and disopyramide.
Concomitant administration of rifabutin and clarithromycin resulted in an increase in rifabutin, and decrease in clarithromycin serum levels together with an increased risk of uveitis.
A pharmacokinetic study demonstrated that the concomitant administration of ritonavir 200 mg every eight hours and clarithromycin 500 mg every 12 hours resulted in a marked inhibition of the metabolism of clarithromycin. The clarithromycin Cmax increased by 31%, Cmin increased 182% and AUC increased by 77% with concomitant administration of ritonavir. An essentially complete inhibition of the formation of 14-OH-clarithromycin was noted. Because of the large therapeutic window for clarithromycin, no dosage reduction should be necessary in patients with normal renal function. However, for patients with renal impairment, the following dosage adjustments should be considered: For patients with CLCR 30 to 60 ml/min the dose of clarithromycin should be reduced by 50%. For patients with CLCR <30 ml/min the dose of clarithromycin should be decreased by 75%. Doses of clarithromycin greater than 1 g/day should not be co-administered with ritonavir.
Similar dose adjustments should be considered in patients with reduced renal function when ritonavir is used as a pharmacokinetic enhancer with other HIV protease inhibitors including atazanavir and saquinavir.
Both clarithromycin and saquinavir are substrates and inhibitors of CYP3A, and there is evidence of a bi-directional drug interaction. Concomitant administration of clarithromycin (500 mg twice daily) and saquinavir (soft gelatin capsules, 1200 mg three times daily) to 12 healthy volunteers resulted in steady-state AUC and Cmax values of saquinavir which were 177% and 187% higher than those seen with saquinavir alone. Clarithromycin AUC and Cmax values were approximately 40% higher than those seen with clarithromycin alone. No dose adjustment is required when the two drugs are co-administered for a limited time at the doses/formulations studied. Observations from drug interaction studies using the soft gelatin capsule formulation may not be representative of the effects seen using the saquinavir hard gelatin capsule. Observations from drug interaction studies performed with saquinavir alone may not be representative of the effects seen with saquinavir/ritonavir therapy. When saquinavir is co-administered with ritonavir, consideration should be given to the potential effects of ritonavir on clarithromycin.
Each of these phosphodiesterase inhibitors is metabolised, at least in part, by CYP3A, and CYP3A may be inhibited by concomitantly administered clarithromycin. Co-administration of clarithromycin with sildenafil, tadalafil or vardenafil would likely result in increased phosphodiesterase inhibitor exposure. Reduction of sildenafil, tadalafil and vardenafil dosages should be considered when these drugs are co-administered with clarithromycin.
Results of clinical studies indicate that there was a modest but statistically significant (p≤0.05) increase of circulating theophylline or carbamazepine levels when either of these drugs were administered concomitantly with clarithromycin. Dose reduction may need to be considered.
The primary route of metabolism for tolterodine is via the 2D6 isoform of cytochrome P450 (CYP2D6). However, in a subset of the population devoid of CYP2D6, the identified pathway of metabolism is via CYP3A. In this population subset, inhibition of CYP3A results in significantly higher serum concentrations of tolterodine. A reduction in tolterodine dosage may be necessary in the presence of CYP3A inhibitors, such as clarithromycin in the CYP2D6 poor metaboliser population.
Caution is advised regarding the concomitant administration of clarithromycin and calcium channel blockers metabolized by CYP3A4 (e.g. verapamil, amlodipine, diltiazem) due to the risk of hypotension. Plasma concentrations of clarithromycin as well as calcium channel blockers may increase due to the interaction. Hypotension, bradyarrhythmias and lactic acidosis have been observed in patients taking clarithromycin and verapamil concomitantly.
Simultaneous oral administration of clarithromycin tablets and zidovudine to HIV-infected adult patients may result in decreased steady-state zidovudine concentrations. Because clarithromycin appears to interfere with the absorption of simultaneously administered oral zidovudine, this interaction can be largely avoided by staggering the doses of clarithromycin and zidovudine to allow for a 4-hour interval between each medication. This interaction does not appear to occur in paediatric HIV-infected patients taking clarithromycin suspension with zidovudine or dideoxyinosine. This interaction is unlikely when clarithromycin is administered via intravenous infusion.
Pseudomembranous colitis has been reported with nearly all antibacterial agents, including macrolides, and may range in severity from mild to life-threatening.
Clostridium difficile-associated diarrhoea (CDAD) has been reported with use of nearly all antibacterial agents including clarithromycin, and may range in severity from mild diarrhoea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon, which may lead to overgrowth of C. difficile. CDAD must be considered in all patients who present with diarrhoea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents. Therefore, discontinuation of clarithromycin therapy should be considered regardless of the indication. Microbial testing should be performed and adequate treatment initiated. Drugs inhibiting peristalsis should be avoided.
Prolonged cardiac repolarisation and QT interval, imparting a risk of developing cardiac arrhythmia and torsade de pointes, have been seen in treatment with macrolides including clarithromycin. Therefore, as the following situations may lead to an increased risk for ventricular arrhythmias (including torsade de pointes), clarithromycin should be used with caution in the following patients;
Epidemiological studies investigating the risk of adverse cardiovascular outcomes with macrolides have shown variable results. Some observational studies have identified a rare short-term risk of arrhythmia, myocardial infarction and cardiovascular mortality associated with macrolides including clarithromycin. Consideration of these findings should be balanced with treatment benefits when prescribing clarithromycin.
The safety of clarithromycin for use in pregnancy has not been established. Based on variable results obtained from animal studies and experience in humans, the possibility of adverse effects on embyofoetal development cannot be excluded.
Some observational studies evaluating exposure to clarithromycin during the first and second trimester have reported an increased risk of miscarriage compared to no antibiotic use or other antibiotic use during the same period. The available epidemiological studies on the risk of major congenital malformations with use of macrolides including clarithromycin during pregnancy provide conflicting results. Therefore, use during pregnancy is not advised without carefully weighing the benefits against risks.
The safety of clarithromycin use during breast-feeding of infants has not been established. Clarithromycin is excreted into human breast milk in small amounts. It has been estimated that an exclusively breastfed infant would receive about 1.7% of the maternal weight-adjusted dose of clarithromycin.
There is no data available on the effect of clarithromycin on fertility in humans. In rats, the limited data available do not indicate any effects on fertility.
There are no data on the effect of clarithromycin on the ability to drive or use machines. The potential for dizziness, vertigo, confusion and disorientation, which may occur with the medication, should be taken into account before patients drive or use machines.
The most frequent and common adverse reactions related to clarithromycin therapy for both adult and pediatric populations are abdominal pain, diarrhea, nausea, vomiting and taste perversion. These adverse reactions are usually mild in intensity and are consistent with the known safety profile of macrolide antibiotics.
There was no significant difference in the incidence of these gastrointestinal adverse reactions during clinical trials between the patient population with or without preexisting mycobacterial infections.
The following list displays adverse reactions reported in clinical trials and from post-marketing experience with clarithromycin immediate-release tablets, granules for oral suspension, powder for solution for injection, extended release tablets and modified-release tablets.
The reactions considered at least possibly related to clarithromycin are displayed by system organ class and frequency using the following convention: very common (≥1/10), common (≥1/100 to <1/10), uncommon (≥1/1,000 to <1/100) and not known (adverse reactions from post-marketing experience; cannot be estimated from the available data). Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness when the seriousness could be assessed.
Uncommon: Cellulitis1, candidiasis, gastroenteritis2, infection3, vaginal infection
Not Known: Pseudomembranous colitis, erysipelas
Uncommon: Leukopenia, neutropenia4, thrombocythemia3, eosinophilia4
Not Known: Agranulocytosis, thrombocytopenia
Uncommon: Anaphylactoid reaction1, hypersensitivity
Not Known: Anaphylactic reaction, angioedema
Uncommon: Anorexia, decreased appetite
Common: Insomnia
Uncommon: Anxiety, nervousness3
Not Known: Psychotic disorder, confusional state, depersonalisation, depression, disorientation, hallucination, abnormal dreams, mania
Common: Dysgeusia, headache, taste perversion
Uncommon: Loss of consciousness1, dyskinesia1, dizziness, somnolence6, tremor
Not Known: Convulsion, ageusia, parosmia, anosmia, paraesthesia
Uncommon: Vertigo, hearing, impaired, tinnitus
Not Known: Deafness
Uncommon: Cardiac arrest1, atrial fibrillation1, electrocardiogram QT prolonged7, extrasystoles1, palpitations
Not Known: Torsade de pointes7, ventricular tachycardia7 ventricular fibrillation
Common: Vasodilation1
Not Known: Hemorrhage8
Uncommon: Asthma1, epistaxis2, pulmonary embolism1
Common: Diarrhea9, vomiting, dyspepsia, nausea, abdominal pain
Uncommon: Esophagitis1, gastrooesophageal reflux disease2, gastritis, proctalgia2, stomatitis, glossitis, abdominal distension4, constipation, dry mouth, eructation, flatulence
Not Known: Pancreatitis acute, tongue discolouration, tooth discoloration
Common: Liver function test abnormal
Uncommon: Cholestasis4, hepatitis4, alanine aminotransferase increased, aspartate aminotransferase increased, gamma-glutamyltransferase increased4
Not Known: Hepatic failure10, jaundice hepatocellular
Common: Rash, hyperhidrosis
Uncommon: Dermatitis bullous1, pruritus, urticaria, rash maculo-papular3
Not Known: Stevens-Johnson syndrome5, toxic epidermal necrolysis5, drug rash with eosinophilia and systemic symptoms (DRESS), acne, acute generalised exanthematous pustulosis (AGEP)
Uncommon: Muscle spasms3, musculoskeletal stiffness1, myalgia2
Not Known: Rhabdomyolysis2,11, myopathy
Uncommon: Blood creatinine increased1, blood urea increased1
Not Known: Renal failure, nephritis interstitial
__Very common __ Injection site phlebitis1
Common: Injection site pain1, injection site inflammation1
Uncommon: Malaise4, pyrexia3, asthenia, chest pain4, chills4, fatigue4
Uncommon: Albumin globulin ratio abnormal1, blood alkaline phosphatase increased4, blood lactate dehydrogenase increased4
Not Known: International normalised ratio increased8, prothrombin time prolonged8, urine color abnormal
1 ADRs reported only for the Powder for Solution for Injection formulation
2 ADRs reported only for the Extended-Release Tablets formulation
3 ADRs reported only for the Granules for Oral Suspension formulation
4 ADRs reported only for the Immediate-Release Tablets formulation
5,7,9,10 See section a)
6,8,11 See section c)
Injection site phlebitis, injection site pain, vessel puncture site pain, and injection site inflammation are specific to the clarithromycin intravenous formulation.
In some of the reports of rhabdomyolysis, clarithromycin was administered concomitantly with statins, fibrates, colchicine or allopurinol.
There have been post-marketing reports of colchicine toxicity with concomitant use of clarithromycin and colchicine, especially in elderly and/or patients with renal insufficiency, some with a fatal outcome.
There have been post-marketing reports of drug interactions and central nervous system (CNS) effects (e.g. somnolence and confusion) with the concomitant use of clarithromycin and triazolam. Monitoring the patient for increased CNS pharmacological effects is suggested.
There have been rare reports of clarithromycin ER tablets in the stool, many of which have occurred in patients with anatomic (including ileostomy or colostomy) or functional gastrointestinal disorders with shortened GI transit times. In several reports, tablet residues have occurred in the context of diarrhea. It is recommended that patients who experience tablet residue in the stool and no improvement in their condition should be switched to a different clarithromycin formulation (e.g. suspension) or another antibiotic.
Special population: Adverse Reactions in Immunocompromised Patients.
Clinical trials have been conducted using clarithromycin paediatric suspension in children 6 months to 12 years of age. Therefore, children under 12 years of age should use clarithromycin paediatric suspension. There are insufficient data to recommend a dosage regimen for use of the clarithromycin IV formulation in patients less than 18 years of age.
Frequency, type and severity of adverse reactions in children are expected to be the same as in adults.
In AIDS and other immunocompromised patients treated with the higher doses of clarithromycin over long periods of time for mycobacterial infections, it was often difficult to distinguish adverse events possibly associated with clarithromycin administration from underlying signs of Human Immunodeficiency Virus (HIV) disease or intercurrent illness.
In adult patients, the most frequently reported adverse reactions by patients treated with total daily doses of 1,000 mg and 2,000 mg of clarithromycin were: nausea, vomiting, taste perversion, abdominal pain, diarrhea, rash, flatulence, headache, constipation, hearing disturbance, Serum Glutamic Oxaloacetic Transaminase (SGOT) and Serum Glutamic Pyruvate Transaminase (SGPT) elevations. Additional low-frequency events included dyspnoea, insomnia and dry mouth. The incidences were comparable for patients treated with 1,000 mg and 2,000 mg, but were generally about 3 to 4 times as frequent for those patients who received total daily doses of 4,000 mg of clarithromycin.
In these immunocompromised patients, evaluations of laboratory values were made by analysing those values outside the seriously abnormal level (i.e. the extreme high or low limit) for the specified test. On the basis of these criteria, about 2% to 3% of those patients who received 1,000 mg or 2,000 mg of clarithromycin daily had seriously abnormal elevated levels of SGOT and SGPT, and abnormally low white blood cell and platelet counts. A lower percentage of patients in these two dosage groups also had elevated Blood Urea Nitrogen levels. Slightly higher incidences of abnormal values were noted for patients who received 4,000 mg daily for all parameters except White Blood Cell.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.