Chemical formula: C₁₆H₁₆ClNO₂S Molecular mass: 321.822 g/mol PubChem compound: 60606
Clopidogrel is a prodrug, one of whose metabolites is an inhibitor of platelet aggregation. Clopidogrel must be metabolised by CYP450 enzymes to produce the active metabolite that inhibits platelet aggregation.
The active metabolite of clopidogrel selectively inhibits the binding of adenosine diphosphate (ADP) to its platelet P2Y12 receptor and the subsequent ADP-mediated activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet aggregation. Due to the irreversible binding, platelets exposed are affected for the remainder of their lifespan (approximately 7-10 days) and recovery of normal platelet function occurs at a rate consistent with platelet turnover. Platelet aggregation induced by agonists other than ADP is also inhibited by blocking the amplification of platelet activation by released ADP.
Because the active metabolite is formed by CYP450 enzymes, some of which are polymorphic or subject to inhibition by other medicinal products, not all patients will have adequate platelet inhibition.
Repeated doses of 75 mg per day produced substantial inhibition of ADP-induced platelet aggregation from the first day; this increased progressively and reached steady state between Day 3 and Day 7. At steady state, the average inhibition level observed with a dose of 75 mg per day was between 40% and 60%. Platelet aggregation and bleeding time gradually returned to baseline values, generally within 5 days after treatment was discontinued.
After single and repeated oral doses of 75 mg per day, clopidogrel is rapidly absorbed. Mean peak plasma levels of unchanged clopidogrel (approximately 2.2-2.5 ng/ml after a single 75 mg oral dose) occurred approximately 45 minutes after dosing. Absorption is at least 50%, based on urinary excretion of clopidogrel metabolites.
Clopidogrel and the main circulating (inactive) metabolite bind reversibly in vitro to human plasma proteins (98% and 94% respectively). The binding is non-saturable in vitro over a wide concentration range.
Clopidogrel is extensively metabolised by the liver. In vitro and in vivo, clopidogrel is metabolised according to two main metabolic pathways: one mediated by esterases and leading to hydrolysis into its inactive carboxylic acid derivative (85% of circulating metabolites), and one mediated by multiple cytochromes P450. Clopidogrel is first metabolised to a 2-oxo-clopidogrel intermediate metabolite. Subsequent metabolism of the 2-oxo-clopidogrel intermediate metabolite results in formation of the active metabolite, a thiol derivative of clopidogrel. The active metabolite is formed mostly by CYP2C19 with contributions from several other CYP enzymes, including CYP1A2, CYP2B6 and CYP3A4. The active thiol metabolite which has been isolated in vitro, binds rapidly and irreversibly to platelet receptors, thus inhibiting platelet aggregation.
The Cmax of the active metabolite is twice as high following a single 300-mg clopidogrel loading dose as it is after four days of 75-mg maintenance dose. Cmax occurs approximately 30 to 60 minutes after dosing.
Following an oral dose of 14C-labelled clopidogrel in man, approximately 50% was excreted in the urine and approximately 46% in the faeces in the 120-hour interval after dosing. After a single oral dose of 75 mg, clopidogrel has a half-life of approximately 6 hours. The elimination half-life of the main circulating (inactive) metabolite was 8 hours after single and repeated administration.
CYP2C19 is involved in the formation of both the active metabolite and the 2-oxo-clopidogrel intermediate metabolite. Clopidogrel active metabolite pharmacokinetics and antiplatelet effects, as measured by ex vivo platelet aggregation assays, differ according to CYP2C19 genotype.
The CYP2C19*1 allele corresponds to fully functional metabolism while the CYP2C19*2 and CYP2C19*3 alleles are nonfunctional. The CYP2C19*2 and CYP2C19*3 alleles account for the majority of reduced function alleles in Caucasian (85%) and Asian (99%) poor metabolisers. Other alleles associated with absent or reduced metabolism are less frequent and include CYP2C19*4, *5, *6, *7, and *8. A patient with poor metaboliser status will possess two loss-of-function alleles as defined above. Published frequencies for the poor CYP2C19 metaboliser genotypes are approximately 2% for Caucasians, 4% for Blacks and 14% for Chinese. Tests are available to determine a patient’s CYP2C19 genotype.
A crossover study in 40 healthy subjects, 10 each in the four CYP2C19 metaboliser groups (ultrarapid, extensive, intermediate and poor), evaluated pharmacokinetic and antiplatelet responses using 300 mg followed by 75 mg/day and 600 mg followed by 150 mg/day, each for a total of 5 days (steady state). No substantial differences in active metabolite exposure and mean inhibition of platelet aggregation (IPA) were observed between ultrarapid, extensive and intermediate metabolisers. In poor metabolisers, active metabolite exposure was decreased by 63-71% compared to extensive metabolisers. After the 300 mg/75 mg dose regimen, antiplatelet responses were decreased in the poor metabolisers with mean IPA (5 μM ADP) of 24% (24 hours) and 37% (Day 5) as compared to IPA of 39% (24 hours) and 58% (Day 5) in the extensive metabolisers and 37% (24 hours) and 60% (Day 5) in the intermediate metabolisers. When poor metabolisers received the 600 mg/150 mg regimen, active metabolite exposure was greater than with the 300 mg/75 mg regimen. In addition, IPA was 32% (24 hours) and 61% (Day 5), which were greater than in the poor metabolisers receiving the 300 mg/75 mg regimen, and were similar to the other CYP2C19 metaboliser groups receiving the 300 mg/75 mg regimen. An appropriate dose regimen for this patient population has not been established in clinical outcome trials.
Consistent with the above results, in a meta-analysis including 6 studies of 335 clopidogrel-treated subjects at steady state, it was shown that active metabolite exposure was decreased by 28% for intermediate metabolisers, and 72% for poor metabolisers while platelet aggregation inhibition (5 μM ADP) was decreased with differences in IPA of 5.9% and 21.4%, respectively, when compared to extensive metabolisers.
The influence of CYP2C19 genotype on clinical outcomes in patients treated with clopidogrel has not been evaluated in prospective, randomised, controlled trials. There have been a number of retrospective analyses, however, to evaluate this effect in patients treated with clopidogrel for whom there are genotyping results: CURE (n=2721), CHARISMA (n=2428), CLARITY-TIMI 28 (n=227), TRITON-TIMI 38 (n=1477), and ACTIVE-A (n=601), as well as a number of published cohort studies.
In TRITON-TIMI 38 and 3 of the cohort studies (Collet, Sibbing, Giusti) the combined group of patients with either intermediate or poor metaboliser status had a higher rate of cardiovascular events (death, myocardial infarction, and stroke) or stent thrombosis compared to extensive metabolisers.
In CHARISMA and one cohort study (Simon), an increased event rate was observed only in poor metabolisers when compared to extensive metabolisers.
In CURE, CLARITY, ACTIVE-A and one of the cohort studies (Trenk), no increased event rate was observed based on metaboliser status.
None of these analyses were adequately sized to detect differences in outcome in poor metabolisers.
The pharmacokinetics of the active metabolite of clopidogrel is not known in these special populations.
After repeated doses of 75 mg clopidogrel per day in subjects with severe renal disease (creatinine clearance from 5 to 15 ml/min), inhibition of ADP-induced platelet aggregation was lower (25%) than that observed in healthy subjects, however, the prolongation of bleeding time was similar to that seen in healthy subjects receiving 75 mg of clopidogrel per day. In addition, clinical tolerance was good in all patients.
After repeated doses of 75 mg clopidogrel per day for 10 days in patients with severe hepatic impairment, inhibition of ADP-induced platelet aggregation was similar to that observed in healthy subjects. The mean bleeding time prolongation was also similar in the two groups.
The prevalence of CYP2C19 alleles that result in intermediate and poor CYP2C19 metabolism differs according to race/ethnicity (see Pharmacogenetics). From literature, limited data in Asian populations are available to assess the clinical implication of genotyping of this CYP on clinical outcome events.
During non-clinical studies in rat and baboon, the most frequently observed effects were liver changes. These occurred at doses representing at least 25 times the exposure seen in humans receiving the clinical dose of 75 mg/day and were a consequence of an effect on hepatic metabolising enzymes. No effect on hepatic metabolising enzymes was observed in humans receiving clopidogrel at the therapeutic dose.
At very high doses, a poor gastric tolerability (gastritis, gastric erosions and/or vomiting) of clopidogrel was also reported in rat and baboon.
There was no evidence of carcinogenic effect when clopidogrel was administered for 78 weeks to mice and 104 weeks to rats when given at doses up to 77 mg/kg per day (representing at least 25 times the exposure seen in humans receiving the clinical dose of 75 mg/day).
Clopidogrel has been tested in a range of in vitro and in vivo genotoxicity studies, and showed no genotoxic activity.
Clopidogrel was found to have no effect on the fertility of male and female rats and was not teratogenic in either rats or rabbits. When given to lactating rats, clopidogrel caused a slight delay in the development of the offspring. Specific pharmacokinetic studies performed with radiolabelled clopidogrel have shown that the parent compound or its metabolites are excreted in the milk. Consequently, a direct effect (slight toxicity), or an indirect effect (low palatability) cannot be excluded.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.