Chemical formula: C₁₃H₁₆ClNO Molecular mass: 237.73 g/mol PubChem compound: 182137
Esketamine is the S-enantiomer of racemic ketamine. It is a non-selective, non-competitive, antagonist of the N-methyl-D-aspartate (NMDA) receptor, an ionotropic glutamate receptor. Through NMDA receptor antagonism, esketamine produces a transient increase in glutamate release leading to increases in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) stimulation and subsequently to increases in neurotrophic signalling which may contribute to the restoration of synaptic function in these brain regions involved with the regulation of mood and emotional behaviour. Restoration of dopaminergic neurotransmission in brain regions involved in the reward and motivation, and decreased stimulation of brain regions involved in anhedonia, may contribute to the rapid response.
In a study of abuse potential conducted in recreational polydrug users (n=41), single doses of esketamine nasal spray (84 mg and 112 mg) and the positive control drug intravenous ketamine (0.5 mg/kg infused over 40 minutes) produced significantly greater scores than placebo on subjective ratings of “drug liking” and on other measures of subjective drug effects.
The mean absolute bioavailability of 84 mg esketamine administered as a nasal spray is approximately 48%.
Esketamine is rapidly absorbed by the nasal mucosa following nasal administration and can be measured in plasma within 7 minutes following a 28 mg dose. The time to reach maximum plasma concentration (tmax) is typically 20 to 40 minutes after the last nasal spray of a treatment session.
Dose-dependent increases in the maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC∞) of esketamine nasal spray were produced by doses of 28 mg, 56 mg and 84 mg.
The pharmacokinetic profile of esketamine is similar after a single dose and repeat dose administration with no accumulation in plasma when esketamine is administered twice a week.
The mean steady-state volume of distribution of esketamine administered by the intravenous route is 709 L.
The proportion of the total concentration of esketamine that is bound to proteins in human plasma is on average 43 to 45%. The degree to which esketamine is bound to plasma proteins is not dependent on hepatic or renal function.
Esketamine is not a substrate of transporters P-glycoprotein (P-gp; multidrug resistance protein 1), breast cancer resistance protein (BCRP), or organic anion transporter (OATP) 1B1, or OATP1B3. Esketamine does not inhibit these transporters or multi-drug and toxin extrusion 1 (MATE1) and MATE2-K, or organic cation transporter 2 (OCT2), OAT1, or OAT3.
Esketamine is extensively metabolised in the liver. The primary metabolic pathway of esketamine in human liver microsomes is N-demethylation to form noresketamine. The main cytochrome P450 (CYP) enzymes responsible for esketamine N-demethylation are CYP2B6 and CYP3A4. Other CYP enzymes, including CYP2C19 and CYP2C9, contribute to a much smaller extent. Noresketamine is subsequently metabolised via CYP-dependent pathways to other metabolites, some of which undergo glucuronidation.
The mean clearance of esketamine administered by the intravenous route was approximately 89 L/hour. After Cmax was reached following nasal administration, the decline in esketamine concentrations in plasma was rapid for the first few hours and then more gradual. The mean terminal half-life following administration as a nasal spray generally ranged from 7 to 12 hours.
Following intravenous administration of radiolabelled esketamine, approximately 78% and 2% of administered radioactivity was recovered in urine and faeces, respectively. Following oral administration of radiolabelled esketamine, approximately 86% and 2% of administered radioactivity was recovered in urine and faeces, respectively. The recovered radioactivity consisted primarily of esketamine metabolites. For the intravenous and oral routes of administration, <1% of the dose was excreted in the urine as unchanged drug.
Esketamine exposure increases with dose from 28 mg to 84 mg. The increase in Cmax and AUC values was less than dose-proportional between 28 mg and 56 mg or 84 mg, but it was nearly dose proportional between 56 mg and 84 mg.
Hepatic enzyme inhibitors:
Pre-treatment of healthy subjects with oral ticlopidine, an inhibitor of hepatic CYP2B6 activity, (250 mg twice daily for 9 days prior to and on the day of esketamine administration) had no effect on the Cmax of esketamine administered as a nasal spray. The AUC∞ of esketamine was increased by approximately 29%. The terminal half-life of esketamine was not affected by ticlopidine pre-treatment.
Pre-treatment with oral clarithromycin, an inhibitor of hepatic CYP3A4 activity, (500 mg twice daily for 3 days prior to and on the day of esketamine administration) increase the mean Cmax and AUC∞ of nasally administered esketamine by approximately 11% and 4%, respectively. The terminal half-life of esketamine was not affected by clarithromycin pre-treatment.
Hepatic enzyme inducers:
Pre-treatment with oral rifampicin, a potent inducer of the activity of multiple hepatic CYP enzymes such as CYP3A4 and CYP2B6, (600 mg daily for 5 days prior to esketamine administration) decreased the mean Cmax and AUC∞ values of esketamine administered as a nasal spray by approximately 17% and 28%, respectively.
Other nasal spray products:
Pre-treatment of subjects with a history of allergic rhinitis and pre-exposed to grass pollen with oxymetazoline administered as a nasal spray (2 sprays of 0.05% solution administered at 1 hour prior to nasal administration of esketamine) had minor effects on the pharmacokinetics of esketamine.
Pre-treatment of healthy subjects with nasal administration of mometasone furoate (200 mcg per day for 2 weeks with the last mometasone furoate dose administered at 1 hour prior to nasal administration of esketamine) had minor effects on the pharmacokinetics of esketamine.
Nasal administration of 84 mg esketamine twice a week for 2 weeks reduced the mean plasma AUC∞ of oral midazolam (single 6 mg dose), a substrate of hepatic CYP3A4, by approximately 16%.
Nasal administration of 84 mg esketamine twice a week for 2 weeks did not affect the mean plasma AUC of oral bupropion (single 150 mg dose), a substrate of hepatic CYP2B6.
The pharmacokinetics of esketamine administered as a nasal spray was compared between elderly but otherwise healthy subjects and younger healthy adults. The mean esketamine Cmax and AUC∞ values produced by a 28-mg dose were 21% and 18% higher, respectively, in elderly subjects (age range 65 to 81 years) compared with younger adult subjects (age range 22 to 50 years). The mean esketamine Cmax and AUC∞ values produced by an 84-mg dose were 67% and 38% higher in elderly subjects (age range 75 to 85 years) compared with younger adult subjects (age range 24 to 54 years). The terminal half-life of esketamine was similar in the elderly and younger adult subjects.
Relative to the subjects with normal renal function (creatinine clearance [CLCR], 88 to 140 mL/min), the Cmax of esketamine was on average 20 to 26% higher in subjects with mild (CLCR, 58 to 77 mL/min), moderate (CLCR, 30 to 47 mL/min), or severe (CLCR, 5 to 28 mL/min, not on dialysis) renal impairment following administration of a 28-mg dose of esketamine nasal spray. The AUC∞ was 13 to 36% higher in the subjects with mild to severe renal impairment.
There is no clinical experience with esketamine administered as a nasal spray in patients on dialysis.
The Cmax and AUC∞ of esketamine produced by a 28-mg doses were similar between subjects with Child-Pugh class A (mild) hepatic impairment and healthy subjects. The Cmax and AUC∞ of esketamine were 8% higher and 103% higher, respectively, in subjects with Child-Pugh class B (moderate) hepatic impairment, relative to healthy subjects.
There is no clinical experience with esketamine administered as a nasal spray in patients with Child-Pugh class C (severe) hepatic impairment.
The pharmacokinetics of esketamine nasal spray was compared between healthy Asian subjects and Caucasian subjects. Mean plasma esketamine Cmax and AUC∞ values produced by a single, 56-mg dose of esketamine were approximately 14% and 33% higher, respectively, in Chinese subjects compared to Caucasians. Both parameters were approximately 40% higher in Japanese subjects, relative to Caucasian subjects. On average, esketamine Cmax was 10% lower and AUC∞ was 17% higher in Korean subjects, relative to Caucasian subjects. The mean terminal half-life of esketamine in the plasma of Asian subjects ranged from 7.1 to 8.9 hours and was 6.8 hours in Caucasian subjects.
No significant differences in the pharmacokinetics of esketamine nasal spray were observed for gender and total body weight (>39 to 170 kg) based on population PK analysis.
The pharmacokinetics of a single, 56-mg dose of esketamine administered as a nasal spray was similar in subjects with allergic rhinitis who were exposed to grass pollen compared to healthy subjects.
Non-clinical data reveal no special hazard for humans based on conventional studies of repeated dose toxicity, genotoxicity, neurotoxicity, reproductive toxicity, and carcinogenic potential. Animal studies with ketamine showed evidence of developmental neurotoxicity. The potential for esketamine to have neurotoxic effects on developing foetuses cannot be excluded.
Esketamine was not mutagenic with or without metabolic activation in the Ames test. Genotoxic effects with esketamine were seen in a screening in vitro micronucleus test in the presence of metabolic activation. However, intravenously-administered esketamine was devoid of genotoxic properties in an in vivo bone marrow micronucleus test in rats and an in vivo Comet assay in rat liver cells.
In an embryo foetal developmental toxicity study with nasally administered ketamine in rats, the offspring was not adversely affected in the presence of maternal toxicity at doses resulting in exposure up to 6-fold higher than human exposure, based on AUC values. In an embryo foetal developmental toxicity study with nasally administered ketamine in rabbits, skeletal malformations were observed and foetal body weight was reduced at maternally toxic doses. Exposure in rabbits was in the region of human exposure based on AUC values.
Published studies in animals (including primates) at doses resulting in light to moderate anaesthesia demonstrate that the use of anaesthetic agents during the period of rapid brain growth or synaptogenesis results in cell loss in the developing brain, that can be associated with prolonged cognitive deficiencies. The clinical significance of these non-clinical findings in not known.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.