Chemical formula: C₁₂H₉F₃N₂O₂ Molecular mass: 270.207 g/mol PubChem compound: 3899
Leflunomide interacts in the following cases:
There was an increase in mean repaglinide Cmax and AUC (1.7- and 2.4-fold, respectively), following repeated doses of A771726, suggesting that A771726 is an inhibitor of CYP2C8 in vivo. Therefore, monitoring patients with concomitant use of medicinal products metabolised by CYP2C8, such as repaglinide, paclitaxel, pioglitazone or rosiglitazone, is recommended as they may have higher exposure.
There was an increase in mean cefaclor Cmax and AUC (1.43- and 1.54-fold, respectively), following repeated doses of A771726, suggesting that A771726 is an inhibitor of OAT3 in vivo. Therefore, when co-administered with substrates of OAT3, such as cefaclor, benzylpenicillin, ciprofloxacin, indomethacin, ketoprofen, furosemide, cimetidine, methotrexate, zidovudine, caution is recommended.
There was an increase in mean rosuvastatin Cmax and AUC (2.65- and 2.51-fold, respectively), following repeated doses of A771726. However, there was no apparent impact of this increase in plasma rosuvastatin exposure on the HMG-CoA reductase activity. If used together, the dose of rosuvastatin should not exceed 10 mg once daily. For other substrates of BCRP (e.g., methotrexate, topotecan, sulfasalazine, daunorubicin, doxorubicin) and the OATP family especially HMG-CoA reductase inhibitors (e.g., simvastatin, atorvastatin, pravastatin, methotrexate, nateglinide, repaglinide, rifampicin) concomitant administration should also be undertaken with caution. Patients should be closely monitored for signs and symptoms of excessive exposure to the medicinal products and reduction of the dose of these medicinal products should be considered.
No clinical data are available on the efficacy and safety of vaccinations under leflunomide treatment. Vaccination with live attenuated vaccines is, however, not recommended. The long half-life of leflunomide should be considered when contemplating administration of a live attenuated vaccine after stopping leflunomide.
Repeated doses of A771726 decreased mean Cmax and AUC of caffeine (CYP1A2 substrate) by 18% and 55%, respectively, suggesting that A771726 may be a weak inducer of CYP1A2 in vivo. Therefore, medicinal products metabolised by CYP1A2 (such as duloxetine, alosetron, theophylline and tizanidine) should be used with caution during treatment, as it could lead to the reduction of the efficacy of these products.
There have been case reports of increased prothrombin time, when leflunomide and warfarin were co-administered. A pharmacodynamics interaction with warfarin was observed with A771726 in a clinical pharmacology study. Therefore, when warfarin or another coumarin anticoagulant is co-administered, close international normalised ratio (INR) follow-up and monitoring is recommended.
Results of animal fertility studies have shown no effect on male and female fertility, but adverse effects on male reproductive organs were observed in repeated dose toxicity studies.
It is recommended that patients receiving leflunomide are not treated with colestyramine or activated powdered charcoal because this leads to a rapid and significant decrease in plasma A771726 (the active metabolite of leflunomide) concentration. The mechanism is thought to be by interruption of enterohepatic recycling and/or gastrointestinal dialysis of A771726.
There was an increase in mean ethinylestradiol Cmax and AUC0-24 (1.58- and 1.54-fold, respectively) and levonorgestrel Cmax and AUC0-24 (1.33- and 1.41-fold, respectively) following repeated doses of A771726. While this interaction is not expected to adversely impact the efficacy of oral contraceptives, consideration should be given to the type of oral contraceptive treatment.
In a small (n=30) study with co-administration of leflunomide (10 to 20 mg per day) with methotrexate (10 to 25 mg per week) a 2- to 3-fold elevation in liver enzymes was seen on 5 of 30 patients. All elevations resolved, 2 with continuation of both medicinal products and 3 after discontinuation of leflunomide. A more than 3-fold increase was seen in another 5 patients. All of these also resolved, 2 with continuation of both medicinal products and 3 after discontinuation of leflunomide.
In patients with rheumatoid arthritis, no pharmacokinetic interaction between the leflunomide (10 to 20 mg per day) and methotrexate (10 to 25 mg per week) was demonstrated.
Interstitial lung disease, as well as rare cases of pulmonary hypertension have been reported during treatment with leflunomide. The risk of their occurrence can be increased in patients with a history of interstitial lung disease. Interstitial lung disease is a potentially fatal disorder, which may occur acutely during therapy. Pulmonary symptoms, such as cough and dyspnoea, may be a reason for discontinuation of the therapy and for further investigation, as appropriate.
Rare cases of Progressive Multifocal Leukoencephalopathy (PML) have been reported in patients receiving leflunomide among other immunosuppressants.
Colitis, including microscopic colitis has been reported in patients treated with leflunomide. In patients on leflunomide treatment presenting unexplained chronic diarrhoea appropriate diagnostic procedures should be performed.
Cases of peripheral neuropathy have been reported in patients receiving leflunomide. Most patients improved after discontinuation of leflunomide. However there was a wide variability in final outcome, i.e. in some patients the neuropathy resolved and some patients had persistent symptoms. Age older than 60 years, concomitant neurotoxic medications, and diabetes may increase the risk for peripheral neuropathy. If a patient taking leflunomide develops a peripheral neuropathy, consider discontinuing leflunomide therapy and performing the drug elimination procedure.
The measurement of ionised calcium levels might show falsely decreased values under treatment with leflunomide and/or teriflunomide (the active metabolite of leflunomide) depending on the type of ionised calcium analyser used (e.g. blood gas analyser). Therefore, the plausibility of observed decreased ionised calcium levels needs to be questioned in patients under treatment with leflunomide or teriflunomide. In case of doubtful measurements, it is recommended to determine the total albumin adjusted serum calcium concentration.
Very rare cases of Stevens Johnson syndrome or toxic epidermal necrolysis and Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) have been reported in patients treated with leflunomide. As soon as skin and/or mucosal reactions are observed which raise the suspicion of such severe reactions, leflunomide and any other possibly associated treatment must be discontinued, and a leflunomide washout procedure initiated immediately. A complete washout is essential in such cases. In such cases re-exposure to leflunomide is contraindicated.
Rare cases of severe liver injury, including cases with fatal outcome, have been reported during treatment with leflunomide. Most of the cases occurred within the first 6 months of treatment. Co-treatment with other hepatotoxic medicinal products was frequently present. It is considered essential that monitoring recommendations are strictly adhered to.
ALT (SGPT) must be checked before initiation of leflunomide and at the same frequency as the complete blood cell count (every two weeks) during the first six months of treatment and every 8 weeks thereafter.
For ALT (SGPT) elevations between 2- and 3-fold the upper limit of normal, dose reduction from 20 mg to 10 mg may be considered and monitoring must be performed weekly. If ALT (SGPT) elevations of more than 2-fold the upper limit of normal persist or if ALT elevations of more than 3-fold the upper limit of normal are present, leflunomide must be discontinued and wash-out procedures initiated. It is recommended that monitoring of liver enzymes be maintained after discontinuation of leflunomide treatment, until liver enzyme levels have normalised.
Due to a potential for additive hepatotoxic effects, it is recommended that alcohol consumption be avoided during treatment with leflunomide.
Since the active metabolite of leflunomide, A771726, is highly protein bound and cleared via hepatic metabolism and biliary secretion, plasma levels of A771726 are expected to be increased in patients with hypoproteinaemia. Leflunomide is contraindicated in patients with severe hypoproteinaemia or impairment of liver function.
Together with ALT, a complete blood cell count, including differential white blood cell count and platelets, must be performed before start of leflunomide treatment as well as every 2 weeks for the first 6 months of treatment and every 8 weeks thereafter.
In patients with pre-existing anaemia, leucopenia, and/or thrombocytopenia as well as in patients with impaired bone marrow function or those at risk of bone marrow suppression, the risk of haematological disorders is increased. If such effects occur, a washout to reduce plasma levels of A771726 should be considered.
In case of severe haematological reactions, including pancytopenia, leflunomide and any concomitant myelosuppressive treatment must be discontinued and a leflunomide washout procedure initiated.
Pustular psoriasis and worsening of psoriasis have been reported after the use of leflunomide. Treatment withdrawal may be considered taking into account patient’s disease and past history.
The active metabolite of leflunomide, A771726 is suspected to cause serious birth defects when administered during pregnancy. Leflunomide is contraindicated in pregnancy.
Women of childbearing potential have to use effective contraception during and up to 2 years after treatment (see “waiting period” below) or up to 11 days after treatment (see abbreviated “washout period” below).
The patient must be advised that if there is any delay in onset of menses or any other reason to suspect pregnancy, they must notify the physician immediately for pregnancy testing, and if positive, the physician and patient must discuss the risk to the pregnancy. It is possible that rapidly lowering the blood level of the active metabolite, by instituting the drug elimination procedure described below, at the first delay of menses may decrease the risk to the foetus from leflunomide.
In a small prospective study in women (n=64) who became inadvertently pregnant while taking leflunomide for no more than three weeks after conception and followed by a drug elimination procedure, no significant differences (p=0.13) were observed in the overall rate of major structural defects (5.4%) compared to either of the comparison groups (4.2% in the disease matched group [n=108] and 4.2% in healthy pregnant women [n=78]).
For women receiving leflunomide treatment and who wish to become pregnant, one of the following procedures is recommended in order to ascertain that the foetus is not exposed to toxic concentrations of A771726 (target concentration below 0.02 mg/L):
Waiting period:
A771726 plasma levels can be expected to be above 0.02 mg/L for a prolonged period. The concentration may be expected to decrease below 0.02 mg/L about 2 years after stopping the treatment with leflunomide.
After a 2-year waiting period, the A771726 plasma concentration is measured for the first time. Thereafter, the A771726 plasma concentration must be determined again after an interval of at least 14 days. If both plasma concentrations are below 0.02 mg/L no teratogenic risk is to be expected.
For further information on the sample testing please contact the Marketing Authorisation Holder or its local representative.
Washout procedure:
After stopping treatment with leflunomide:
However, also following either of the washout procedures, verification by 2 separate tests at an interval of at least 14 days and a waiting period of one-and-a-half months between the first occurrence of a plasma concentration below 0.02 mg/L and fertilisation is required.
Women of childbearing potential should be told that a waiting period of 2 years after treatment discontinuation is required before they may become pregnant. If a waiting period of up to approximately 2 years under reliable contraception is considered unpractical, prophylactic institution of a washout procedure may be advisable.
Both colestyramine and activated powdered charcoal may influence the absorption of oestrogens and progestogens such that reliable contraception with oral contraceptives may not be guaranteed during the washout procedure with colestyramine or activated powdered charcoal. Use of alternative contraceptive methods is recommended.
Animal studies indicate that leflunomide or its metabolites pass into breast milk. Breast-feeding women must, therefore, not receive leflunomide.
Results of animal fertility studies have shown no effect on male and female fertility, but adverse effects on male reproductive organs were observed in repeated dose toxicity studies.
In the case of side effects such as dizziness the patient’s ability to concentrate and to react properly may be impaired. In such cases patients should refrain from driving cars and using machines.
© All content on this website, including data entry, data processing, decision support tools, "RxReasoner" logo and graphics, is the intellectual property of RxReasoner and is protected by copyright laws. Unauthorized reproduction or distribution of any part of this content without explicit written permission from RxReasoner is strictly prohibited. Any third-party content used on this site is acknowledged and utilized under fair use principles.